Solveeit Logo

Question

Question: The plane \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3\)meets the co-ordinate axes in \(A,B,C\). Th...

The plane xa+yb+zc=3\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3meets the co-ordinate axes in A,B,CA,B,C. The centroid of the triangle ABC is

A

(a3,b3,c3)\left( \frac{a}{3},\frac{b}{3},\frac{c}{3} \right)

B

(3a,3b,3c)\left( \frac{3}{a},\frac{3}{b},\frac{3}{c} \right)

C

(1a,1b,1c)\left( \frac{1}{a},\frac{1}{b},\frac{1}{c} \right)

D

(a,b,c)(a,b,c)

Answer

(a,b,c)(a,b,c)

Explanation

Solution

Obviously, co-ordinates of A, B, C are respectively (3a,0,0)( 3 a , 0,0 ) (0,3b,0)( 0,3 b , 0 ) and (0,0,3c)( 0,0,3 c )

Hence centroid is (a,b,c)( a , b , c )