Question
Question: The plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ cuts the X-axis at A, Y-axis at B and Z-axis...
The plane 2x+3y+4z=1 cuts the X-axis at A, Y-axis at B and Z-axis at C, then the area of △ABC=...

A
71 sq. units
B
29 sq. units
C
41 sq. units
D
61 sq. units
Answer
61 sq. units
Explanation
Solution
Solution:
The plane given is
2x+3y+4z=1.Step 1: Find the intercepts on the axes.
-
X-axis interception (A): Set y=0,z=0
2x=1 ⇒ x=2, so A=(2,0,0). -
Y-axis interception (B): Set x=0,z=0
3y=1 ⇒ y=3, so B=(0,3,0). -
Z-axis interception (C): Set x=0,y=0
4z=1 ⇒ z=4, so C=(0,0,4).
Step 2: Calculate the area of △ABC.
Let
AB=B−A=(−2,3,0)andAC=C−A=(−2,0,4).Compute the cross product:
AB×AC=i^−2−2j^30k^04=i^(3⋅4−0⋅0)−j^((−2)⋅4−0⋅(−2))+k^((−2)⋅0−3⋅(−2)). =i^(12)−j^(−8)+k^(6)=(12,8,6).The magnitude is:
∥AB×AC∥=122+82+62=144+64+36=244=261.Thus, the area of △ABC is:
Area=21∥AB×AC∥=21×261=61.