Solveeit Logo

Question

Question: The plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ cuts the X-axis at A, Y-axis at B and Z-axis...

The plane x2+y3+z4=1\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1 cuts the X-axis at A, Y-axis at B and Z-axis at C, then the area of ABC=...\triangle ABC = ...

A

71\sqrt{71} sq. units

B

29\sqrt{29} sq. units

C

41\sqrt{41} sq. units

D

61\sqrt{61} sq. units

Answer

61\sqrt{61} sq. units

Explanation

Solution

Solution:

The plane given is

x2+y3+z4=1.\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1.

Step 1: Find the intercepts on the axes.

  • X-axis interception (A): Set y=0,z=0y=0, z=0
    x2=1\frac{x}{2}=1 ⇒ x=2x=2, so A=(2,0,0)A=(2,0,0).

  • Y-axis interception (B): Set x=0,z=0x=0, z=0
    y3=1\frac{y}{3}=1 ⇒ y=3y=3, so B=(0,3,0)B=(0,3,0).

  • Z-axis interception (C): Set x=0,y=0x=0, y=0
    z4=1\frac{z}{4}=1 ⇒ z=4z=4, so C=(0,0,4)C=(0,0,4).

Step 2: Calculate the area of ABC\triangle ABC.

Let

AB=BA=(2,3,0)andAC=CA=(2,0,4).\vec{AB} = B - A = (-2, 3, 0) \quad \text{and} \quad \vec{AC} = C - A = (-2, 0, 4).

Compute the cross product:

AB×AC=i^j^k^230204=i^(3400)j^((2)40(2))+k^((2)03(2)).\vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 3 & 0 \\ -2 & 0 & 4 \end{vmatrix} = \hat{i}(3 \cdot 4 - 0 \cdot 0) - \hat{j}((-2) \cdot 4 - 0 \cdot (-2)) + \hat{k}((-2) \cdot 0 - 3 \cdot (-2)). =i^(12)j^(8)+k^(6)=(12,8,6).=\hat{i}(12) - \hat{j}(-8) + \hat{k}(6) = (12, 8, 6).

The magnitude is:

AB×AC=122+82+62=144+64+36=244=261.\|\vec{AB} \times \vec{AC}\| = \sqrt{12^2 + 8^2 + 6^2} = \sqrt{144 + 64 + 36} = \sqrt{244} = 2\sqrt{61}.

Thus, the area of ABC\triangle ABC is:

Area=12AB×AC=12×261=61.\text{Area} = \frac{1}{2} \|\vec{AB} \times \vec{AC}\| = \frac{1}{2} \times 2\sqrt{61} = \sqrt{61}.