Solveeit Logo

Question

Question: The plane \(ax + by + cz = 1\)meets the co-ordinate axes in A, B and C. The centroid of the triangle...

The plane ax+by+cz=1ax + by + cz = 1meets the co-ordinate axes in A, B and C. The centroid of the triangle is

A

(3a,3b,3c)(3a,3b,3c)

B

(a3,b3,c3)\left( \frac{a}{3},\frac{b}{3},\frac{c}{3} \right)

C

(3a,3b,3c)\left( \frac{3}{a},\frac{3}{b},\frac{3}{c} \right)

D

(13a,13b,13c)\left( \frac{1}{3a},\frac{1}{3b},\frac{1}{3c} \right)

Answer

(13a,13b,13c)\left( \frac{1}{3a},\frac{1}{3b},\frac{1}{3c} \right)

Explanation

Solution

Centroid is (1a+0+03,0+1b+03,0+0+1c3)\left( \frac { \frac { 1 } { a } + 0 + 0 } { 3 } , \frac { 0 + \frac { 1 } { b } + 0 } { 3 } , \frac { 0 + 0 + \frac { 1 } { c } } { 3 } \right) i.e.,(13a,13b,13c)\left( \frac { 1 } { 3 a } , \frac { 1 } { 3 b } , \frac { 1 } { 3 c } \right).