Solveeit Logo

Question

Physics Question on wave interference

The phase difference between two waves x1=A  sin(ωt+π6)x_1 = A \; \sin (\omega t + \frac{\pi}{6} ) and x2=Acosωtx_2 = A \cos \omega t is

A

π2\frac{\pi}{2}

B

π3\frac{\pi}{3}

C

π6\frac{\pi}{6}

D

π\pi

Answer

π3\frac{\pi}{3}

Explanation

Solution

Here, the equation of two waves
x1=Asin(ωt+π6)x_{1} =A\, sin \left(\omega t+\frac{\pi}{6}\right) and
x2=Acos(ωt)x_{2} = A \,cos \left(\omega t\right)
sin(θ+π2)=cosθ\because sin \left(\theta +\frac{\pi}{2}\right) = cos\, \theta
Hence, x2=Asin(ωt+π2)x_{2} = A \,sin \left(\omega t +\frac{\pi}{2}\right)
Now, the phase difference
ϕ=(ωt+π2)(ωt+π6)\phi = \left(\omega t +\frac{\pi}{2}\right) - \left(\omega t +\frac{\pi}{6}\right)
ϕ=π2π6=π3rad\Rightarrow \phi = \frac{\pi}{2} -\frac{\pi}{6} = \frac{\pi}{3} rad
Hence, the phase difference between the waves is π3\frac{\pi}{3} rad.