Solveeit Logo

Question

Physics Question on wave interference

The phase difference between two waves, represented by y1=106sin[100t+(x/50)+0.5]my_1=10^{-6} \sin[100t +(x/50)+0.5]\,m y2=106cos[100t+(x/50)]my_2=10^{-6} \cos[100t +(x/50)]\,m where xx is expressed in metres and tt is expressed in seconds, is approximately.

A

1.07 radians

B

2.07 radians

C

0.5 radians

D

1.5 radians

Answer

1.07 radians

Explanation

Solution

y1=106sin[100t+(x/50)+0.5]y_1=10^{-6} \sin[100t +(x/50)+0.5]
y2=106cos[100t+(x/50)]y_2=10^{-6} \cos[100t +(x/50)]
=106sin[100t+(x/50)+π/2]=10^{-6} \sin[100t +(x/50)+\pi/2]
=106sin[100t+(x/50)+1.57]=10^{-6} \sin[100t +(x/50)+1.57]
[using cosx=sin(x+π/2)\cos\, x = \sin(x+\pi/2)]
The phase difference = 1.57 - 0.5 = 1.07
[or using sinx=cos(π/2x).\sin\, x = \cos(\pi/2 - x). We get the same result.]