Solveeit Logo

Question

Physics Question on Oscillations

The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:

A

π\pi rad

B

3π2\frac {3\pi}{2} rad

C

π2\frac {\pi}{2} rad

D

zerozero

Answer

π\pi rad

Explanation

Solution

Displacement (x) of SHM
x=Asin(ωt+ϕ)(i)x=A\,sin \left(\omega t+\phi\right) \dots(i)
dxdt=Aωcos(ωt+ϕ)\frac{dx}{dt}=A\,\omega\,cos(\omega\,t+\phi)
Acceleration (a)=d2xdt2(a)=\frac{d^{2}x}{dt^{2}}
a=ω2Asin(ωt+ϕ)\Rightarrow a=-\omega^{2}\,A\,sin(\omega\,t+\phi)
a=ω2Asin(ωt+ϕ+π)(ii)\Rightarrow a=\omega^{2}\,A\,sin(\omega\,t+\phi+\pi)\dots(ii)
from (1) & (2), phase difference between displacement and acceleration is π\pi