Solveeit Logo

Question

Question: The pH of \(0 \cdot 05{\text{ M}}\) aqueous solution of diethyl amine is \({\text{12}}\). Calculate ...

The pH of 005 M0 \cdot 05{\text{ M}} aqueous solution of diethyl amine is 12{\text{12}}. Calculate its Kb{K_{\text{b}}}.

Explanation

Solution

The measure basicity or the strength of base is known as base dissociation constant (Kb)\left( {{K_{\text{b}}}} \right). Calculate the pOH from the pH given which gives the concentration of OH{\text{O}}{{\text{H}}^ - }.
Diethyl amine dissociates as shown in the reaction, (C2H5)2NH+H2O(C2H5)2NH2++OH{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }. Setup the equilibrium table and calculate the base dissociation constant.

Complete step by step answer:
Step 1:
Calculate the pOH using the equation as follows:
pH+pOH=14{\text{pH}} + {\text{pOH}} = 14
Rearrange the equation for pOH as follows:
pOH=14pH{\text{pOH}} = 14 - {\text{pH}}
Substitute 12{\text{12}} for pH. Thus,
pOH=1412=2{\text{pOH}} = 14 - 12 = 2
Thus, the pOH is 22.
Step 2:
Calculate the concentration of OH{\text{O}}{{\text{H}}^ - } using the equation as follows:
pOH=log[OH]{\text{pOH}} = - \log \left[ {{\text{O}}{{\text{H}}^ - }} \right]
Rearrange the equation for the concentration of OH{\text{O}}{{\text{H}}^ - } as follows:
[OH]=10pOH\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - {\text{pOH}}}}
Thus,
[OH]=102 M\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}}
Thus, the concentration of OH{\text{O}}{{\text{H}}^ - } is 102 M{10^{ - 2}}{\text{ M}}.
Step 3:
Calculate the base dissociation constant as follows:
The dissociation of diethylamine occurs as follows:
(C2H5)2NH+H2O(C2H5)2NH2++OH{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }
At equilibrium:
(C2H5)2NH+H2O(C2H5)2NH2++OH{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }
 005 0 0{\text{ 0}} \cdot {\text{05 0 0}}
 005-x x x{\text{ 0}} \cdot {\text{05-x x x}}

Thus, x=[OH]=102 M=001 Mx = \left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}} = 0 \cdot 01{\text{ M}}
Calculate the base dissociation constant as follows:
Kb=[(C2H5)2NH2+][OH][(C2H5)2NH]{K_{\text{b}}} = \dfrac{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}_2^ + } \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}} \right]}}
Kb=(x)(x)(005x){K_{\text{b}}} = \dfrac{{\left( x \right)\left( x \right)}}{{\left( {0 \cdot 05 - x} \right)}}
Kb=(001)(001)(005001){K_{\text{b}}} = \dfrac{{\left( {0 \cdot 01} \right)\left( {0 \cdot 01} \right)}}{{\left( {0 \cdot 05 - 0 \cdot 01} \right)}}
Kb=(001)2004{K_{\text{b}}} = \dfrac{{{{\left( {0 \cdot 01} \right)}^2}}}{{0 \cdot 04}}
Kb=25×103{K_{\text{b}}} = 2 \cdot 5 \times {10^{ - 3}}
Thus, the base dissociation constant is 25×1032 \cdot 5 \times {10^{ - 3}}.

Note:
Diethyl amine dissociates as shown in the reaction, (C2H5)2NH+H2O(C2H5)2NH2++OH{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }. Setup the equilibrium table and calculate the base dissociation constant.