Solveeit Logo

Question

Question: The \( pH \) of 0.005 M codeine \( ({C_{18}}{H_{21}}N{O_3}) \) solution is 9.95. Calculate its ioniz...

The pHpH of 0.005 M codeine (C18H21NO3)({C_{18}}{H_{21}}N{O_3}) solution is 9.95. Calculate its ionization constant and pKbp{K_b}.

Explanation

Solution

We have pHpH , value using that we can calculate hydrogen ion concentration. Knowing hydrogen ion concentration and ionic product of water can calculate the concentration of hydroxyl ions. Then we can find ionization constant Kb{K_b} by using Kb=[M+][OH][MOH]{K_b} = \dfrac{{[{M^ + }][O{H^ - }]}}{{[MOH]}} , where [M+][{M^ + }] is codeine ion. We can find pKbp{K_b} by pKb=log(kb)p{K_b} = - \log ({k_b}) .

Complete step by step solution:
We have,
Codeine+H2OCodeineH++OHCodeine + {H_2}O\underset {} \leftrightarrows Codeine{H^ + } + O{H^ - }
pH=9.95pH = 9.95 and [MOH]=0.005M[MOH] = 0.005M
[H+]=antilog(pH)[{H^ + }] = anti\log \left( { - pH} \right)
Substituting we have,
[H+]=antilog(9.95)[{H^ + }] = anti\log \left( { - 9.95} \right)
[H+]=1.12×1010M[{H^ + }] = 1.12 \times {10^{ - 10}}M .
So,
[OH]=Kw[H+][O{H^ - }] = \dfrac{{{K_w}}}{{[{H^ + }]}}
Kw{K_w} is an ionization constant of water. That is Kw=1×1014mol2dm6{K_w} = 1 \times {10^{ - 14}}mo{l^2}d{m^{ - 6}} .
Substituting we have
[OH]=1×10141.12×1010[O{H^ - }] = \dfrac{{1 \times {{10}^{ - 14}}}}{{1.12 \times {{10}^{ - 10}}}}
[OH]=8.928×105M[O{H^ - }] = 8.928 \times {10^{ - 5}}M
The concentration of the corresponding codenium ion is also the same as that of hydroxyl ion. Let the codeine ion be denoted by [M+][{M^ + }] . Thus
Kb=[M+][OH][MOH]{K_b} = \dfrac{{[{M^ + }][O{H^ - }]}}{{[MOH]}}
Substituting we have,
Kb=(8.928×105)20.005{K_b} = \dfrac{{{{\left( {8.928 \times {{10}^{ - 5}}} \right)}^2}}}{{0.005}}
Kb=7.971×1090.005{K_b} = \dfrac{{7.971 \times {{10}^{ - 9}}}}{{0.005}}
Kb=1.594×106\Rightarrow {K_b} = 1.594 \times {10^{ - 6}}
The ionization constant is 1.594×1061.594 \times {10^{ - 6}} .
Now pKb=log(kb)p{K_b} = - \log ({k_b})
pKb=log(1.594×106)p{K_b} = - \log (1.594 \times {10^{ - 6}})
pKb=5.79\Rightarrow p{K_b} = 5.79

Note:
We know that there is no unit for ionization constant and pKbp{K_b} . Careful in the calculation part. the ionization for a general weak acid, HA can be written as follows
HA(aq)H+(aq)+A(aq)H{A_{(aq)}} \to {H^ + }_{(aq)} + {A^ - }_{(aq)}
The Acid Ionization constant Ka{K_a} is given by Ka=[H+][A][HA]{K_a} = \dfrac{{[{H^ + }][{A^ - }]}}{{[HA]}} . Also codeine is a weak organic base.