Solveeit Logo

Question

Question: The perpendicular distance from origin to the plane through the point (2, 3, –1) and perpendicular t...

The perpendicular distance from origin to the plane through the point (2, 3, –1) and perpendicular to vector is

A

1374\frac { 13 } { \sqrt { 74 } }

B

1374- \frac { 13 } { \sqrt { 74 } }

C

13

D

None of these

Answer

1374\frac { 13 } { \sqrt { 74 } }

Explanation

Solution

We know, the equation of the plane is

or (r(2i+3jk))(3i4j+7k)=0( r - ( 2 i + 3 j - k ) ) \cdot ( 3 i - 4 j + 7 k ) = 0

3x4y+7z+13=03 x - 4 y + 7 z + 13 = 0

Hence, perpendicular distance of the plane from origin =1332+(4)2+72=1374= \frac { 13 } { \sqrt { 3 ^ { 2 } + ( - 4 ) ^ { 2 } + 7 ^ { 2 } } } = \frac { 13 } { \sqrt { 74 } }