Solveeit Logo

Question

Mathematics Question on Coplanarity of Two Lines

The perpendicular distance between the lines 9x224xy+16y2+21x28y+10=09x^2- 24xy + 16y^2 + 21x- 28y+ 10 = 0 is

A

44747

B

44625

C

44656

D

44566

Answer

44625

Explanation

Solution

Since, 9x224xy+16y2+21x28y+10=09x^2 - 24 xy + 16y^2 + 21x - 28y + 10 = 0
(3x)2+(4y)224xy+21x28y+10=0\Rightarrow \:\: (3x)^2 + (4y)^2 - 24xy + 21x - 28y + 10 = 0
(3x4y)2+7(3x4y)+10=0\Rightarrow \:\: (3x - 4y)^2 + 7(3x - 4y) + 10 = 0
Let 3x4y=t3x-4y = t
t2+7t+10=0(t+5)(t+2)=0\therefore \:\: t^2 + 7t + 10 = 0 \Rightarrow \: (t + 5)(t + 2) = 0
t=5,2\Rightarrow \:\: t = - 5 , -2
3x4y=5,2\therefore \:\:\: 3x - 4y = - 5 , - 2
\therefore Lines are 3x4y+5=03x - 4y + 5 = 0 and 3x4y+2=03x - 4y + 2 = 0
\therefore Distance between these lines
=5232+42=39+16=35= \frac{\left|5-2\right|}{\sqrt{3^{2} +4^{2}}} =\frac{3}{\sqrt{9+16}} = \frac{3}{5}