Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

The perpendicular bisector of the line segment joining the points A(–1, 3) and B(2, 4) cuts the y-axis at :

A

(0, 5)

B

(0, -5)

C

(0, 4)

D

(0, -4)

Answer

(0, 5)

Explanation

Solution

The midpoint of A(1,3)A(-1, 3) and B(2,4)B(2, 4) is:
Midpoint=(1+22,3+42)=(12,72)\text{Midpoint} = \left( \frac{-1 + 2}{2}, \frac{3 + 4}{2} \right) = \left( \frac{1}{2}, \frac{7}{2} \right)
The slope of ABAB is:
Slope=432(1)=13\text{Slope} = \frac{4 - 3}{2 - (-1)} = \frac{1}{3}
The perpendicular slope is 3-3. Using the point-slope formula:
y72=3(x12)y - \frac{7}{2} = -3 \left( x - \frac{1}{2} \right)
Simplify to find the yy-intercept (x=0x = 0):
y=5y = 5