Solveeit Logo

Question

Mathematics Question on Coplanarity of Two Lines

The perpendicular bisector of the line segment joining P (1, 4) and Q(k, 3) has y-intercept -4. Then a possible value of k is

A

1

B

2

C

-2

D

-4

Answer

-4

Explanation

Solution

Slope of PQ=34k1=1k1PQ = \frac{3-4}{k-1} = \frac{-1}{k-1} \therefore Slope of perpendicular bisector of PQ=(k1) PQ =\left(k-1\right) Also mid point of PQ(k+12,72) PQ \left(\frac{k+1}{2}, \frac{7}{2}\right) \therefore Equation of perpendicular bisector is y72=(k1)(xk+12)y - \frac{7}{2} = \left(k-1\right) \left(x - \frac{k+1}{2}\right) 2y7=2(k1)x(k21) \Rightarrow 2y -7 = 2\left(k-1\right)x -\left(k^{2 } - 1\right) 2(k1)x2y+(8k2)=0 \Rightarrow 2\left(k-1\right)x - 2y + \left(8 - k^{2}\right) = 0 \therefore y-intercept =8k22=4 = - \frac{8-k^{2}}{-2} = - 4 8k2=8 \Rightarrow 8 -k^{2} = - 8 or k2=16k=±4 k^{2} = 16 \Rightarrow k = \pm4