Solveeit Logo

Question

Question: The period of the function \(\sin\left( \frac{3x}{2} \right)\)is....

The period of the function sin(3x2)\sin\left( \frac{3x}{2} \right)is.

A

=2π3/2=4π3= \frac{2\pi}{3/2} = \frac{4\pi}{3}

B

3π3\pi

C

4π3\frac{4\pi}{3}

D

12π12\pi

Answer

12π12\pi

Explanation

Solution

Period of sin(2x3)=2π2/3=3π\sin \left( \frac { 2 x } { 3 } \right) = \frac { 2 \pi } { 2 / 3 } = 3 \pi

Period of sin(3x2)=2π3/2=4π3\sin \left( \frac { 3 x } { 2 } \right) = \frac { 2 \pi } { 3 / 2 } = \frac { 4 \pi } { 3 }

L.C.M. of 3π3 \pi and 4π3\frac { 4 \pi } { 3 }= 12π12 \pi. Hence period is 12π12 \pi.