Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The period of the function sin(2x3)+sin(3x2)\sin\left(\frac{2x}{3}\right)+\sin\left(\frac{3x}{2}\right) is

A

2π2 \pi

B

10π10 \pi

C

6π6 \pi

D

12π12 \, \pi

Answer

12π12 \, \pi

Explanation

Solution

As sin2x3=sin(2π+2x3)\sin \frac{2x}{3} = \sin\left(2\pi + \frac{2x}{3}\right) =sin(23(3π+x)),=\sin\left(\frac{2}{3} \left(3\pi+x\right)\right), therefore , period of sin2x3 \sin \frac{2x}{3} is 3π3\pi and also sin3x2=sin(2π+3x2)=sin(32(4π3+x))\sin \frac{3x}{2} =\sin\left(2\pi + \frac{3x}{2}\right) = \sin\left(\frac{3}{2} \left(\frac{4 \pi}{3} + x\right)\right) therefore, period of sin3x2 \sin \, \frac{3x}{2} is 4π3\frac{4\pi}{3}. Hence penod of f(x) is L.C.M. of 3π3 \pi and 4π3,\frac{4 \pi}{3}, i.e.,12π12 \pi . (\because set of multiples of 3π=3π,6π,9π,12π,.....)3 \pi={3 \pi,6 \pi, 9 \pi, 12 \pi, .....)} and set of multiplies of 4π3\frac{4 \pi}{3} =\left\\{\frac{4\pi}{3} , \frac{8\pi}{3} , \frac{12\pi}{3} , \frac{16\pi}{3}m,...\right\\}