Solveeit Logo

Question

Question: The period of the function \(f(x) = \cos^{2}3x + \tan 4x\)is...

The period of the function f(x)=cos23x+tan4xf(x) = \cos^{2}3x + \tan 4xis

A

π3\frac{\pi}{3}

B

π4\frac{\pi}{4}

C

π6\frac{\pi}{6}

D

π\pi

Answer

π\pi

Explanation

Solution

f(x)=12(1+cos6x)+tan4x.f(x) = \frac{1}{2}\left( 1 + \cos 6x \right) + \tan 4x. The period of cos6x is 2π6=π3\frac{2\pi}{6} = \frac{\pi}{3} and the period of tan4x\tan 4xis π4\frac{\pi}{4}.

Hence the period of ffis 1.c.m. of π3\frac{\pi}{3} and π4=π\frac{\pi}{4} = \pi