Solveeit Logo

Question

Question: The period of the function \(f(x) = 2\cos\frac{1}{3}(x - \pi)\) is...

The period of the function f(x)=2cos13(xπ)f(x) = 2\cos\frac{1}{3}(x - \pi) is

A

6π6\pi

B

4π4\pi

C

2π2\pi

D

π\pi

Answer

6π6\pi

Explanation

Solution

f(x)=2cos13(xπ)f(x) = 2\cos\frac{1}{3}(x - \pi) =2cos(x3π3)= 2\cos\left( \frac{x}{3} - \frac{\pi}{3} \right)

Now, since cosx\cos x has period 2π2\pi \Rightarrow cos(x3π3)\cos\left( \frac{x}{3} - \frac{\pi}{3} \right) has period 2π13=6π\frac{2\pi}{\frac{1}{3}} = 6\pi

\Rightarrow 2cos(x3π3)2\cos\left( \frac{x}{3} - \frac{\pi}{3} \right) has period =6π= 6\pi.