Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

The period of the function f(x)=cos4x+f\left(x\right)= cos 4x+ tan 3x3x is

A

π12\frac{\pi}{12}

B

π6\frac{\pi}{6}

C

π2\frac{\pi}{2}

D

π\pi

Answer

π\pi

Explanation

Solution

We have, f(x)=cos4x+tan3xf(x)=\cos 4 x+\tan 3 x
Clearly, period of cos4x\cos 4 x is 2π4=π2\frac{2 \pi}{4}=\frac{\pi}{2} and that of tan3x\tan 3 x is π3\frac{\pi}{3}
\therefore Period of f(x)=LCM of (π and π)HCF of (2 and 3)f(x)=\frac{\operatorname{LCM} \text { of }(\pi \text { and } \pi)}{H C F \text { of }(2 \text { and } 3)}
=π1=π=\frac{\pi}{1}=\pi