Solveeit Logo

Question

Question: The period of the function \(f\left( x \right)=4{{\sin }^{4}}\left( \dfrac{4x-3\pi }{6{{\pi }^{2}}} ...

The period of the function f(x)=4sin4(4x3π6π2)+2cos(4x3π3π2)f\left( x \right)=4{{\sin }^{4}}\left( \dfrac{4x-3\pi }{6{{\pi }^{2}}} \right)+2\cos \left( \dfrac{4x-3\pi }{3{{\pi }^{2}}} \right)
(A) 3π24\dfrac{3{{\pi }^{2}}}{4}
(B) 3π34\dfrac{3{{\pi }^{3}}}{4}
(C) 4π23\dfrac{4{{\pi }^{2}}}{3}
(D) 4π33\dfrac{4{{\pi }^{3}}}{3}

Explanation

Solution

We start solving this problem by first assuming that 4x3π3π2=2t\dfrac{4x-3\pi }{3{{\pi }^{2}}}=2t. Then we solve the expression by using the trigonometric identities cos2θ=12sin2θ\cos 2\theta =1-2{{\sin }^{2}}\theta and cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 and simplify the function until we transform it into a single trigonometric function. Then we use the property of period of any function f(x)=cos(ax+b)f\left( x \right)=\cos \left( ax+b \right) is 2πa\dfrac{2\pi }{a} to find the period of our given function.

Complete step-by-step answer:
First let us consider 4x3π6π2=t\dfrac{4x-3\pi }{6{{\pi }^{2}}}=t.
Then we get 4x3π3π2=2t\dfrac{4x-3\pi }{3{{\pi }^{2}}}=2t.
Then we can write the function as f(x)=4sin4t+2cos2tf\left( x \right)=4{{\sin }^{4}}t+2\cos 2t
Now, let us simplify the expression 4sin4t+2cos2t4{{\sin }^{4}}t+2\cos 2t.
Now let us consider the formula cos2θ=12sin2θ2sin2θ=1cos2θ\cos 2\theta =1-2{{\sin }^{2}}\theta \Rightarrow 2{{\sin }^{2}}\theta =1-\cos 2\theta .
So, we can write our above expression as,
4sin4t+2cos2t=(1cos2t)2+2cos2t 4sin4t+2cos2t=cos22t2cos2t+1+2cos2t 4sin4t+2cos2t=cos22t+1 \begin{aligned} & \Rightarrow 4{{\sin }^{4}}t+2\cos 2t={{\left( 1-\cos 2t \right)}^{2}}+2\cos 2t \\\ & \Rightarrow 4{{\sin }^{4}}t+2\cos 2t={{\cos }^{2}}2t-2\cos 2t+1+2\cos 2t \\\ & \Rightarrow 4{{\sin }^{4}}t+2\cos 2t={{\cos }^{2}}2t+1 \\\ \end{aligned}
Now let us consider the formula cos2θ=2cos2θ1cos2θ=cos2θ+12\cos 2\theta =2{{\cos }^{2}}\theta -1\Rightarrow {{\cos }^{2}}\theta =\dfrac{\cos 2\theta +1}{2}.
Using the above formula, we can write above equation as,
4sin4t+2cos2t=cos4t+12+1 4sin4t+2cos2t=cos4t+32 \begin{aligned} & \Rightarrow 4{{\sin }^{4}}t+2\cos 2t=\dfrac{\cos 4t+1}{2}+1 \\\ & \Rightarrow 4{{\sin }^{4}}t+2\cos 2t=\dfrac{\cos 4t+3}{2} \\\ \end{aligned}
So, we can write it as
4sin4t+2cos2t=12cos4t+32\Rightarrow 4{{\sin }^{4}}t+2\cos 2t=\dfrac{1}{2}\cos 4t+\dfrac{3}{2}
So, we get the function f as,
f(x)=12cos4t+32f\left( x \right)=\dfrac{1}{2}\cos 4t+\dfrac{3}{2}
Now, substituting the value of t, we get
f(x)=12cos4(4x3π6π2)+32 f(x)=12cos8x6π3π2+32 f(x)=12cos(8x3π22π)+32 \begin{aligned} & \Rightarrow f\left( x \right)=\dfrac{1}{2}\cos 4\left( \dfrac{4x-3\pi }{6{{\pi }^{2}}} \right)+\dfrac{3}{2} \\\ & \Rightarrow f\left( x \right)=\dfrac{1}{2}\cos \dfrac{8x-6\pi }{3{{\pi }^{2}}}+\dfrac{3}{2} \\\ & \Rightarrow f\left( x \right)=\dfrac{1}{2}\cos \left( \dfrac{8x}{3{{\pi }^{2}}}-\dfrac{2}{\pi } \right)+\dfrac{3}{2} \\\ \end{aligned}
Now we need to find the period of the above function f(x).
We know that the period of any function f(x)=cosxf\left( x \right)=\cos x is 2π2\pi .
Then the period of any function f(x)=cos(ax+b)f\left( x \right)=\cos \left( ax+b \right) is 2πa\dfrac{2\pi }{a}.
Using that we can say that the period of our function f(x) is given by,
2π83π2=2π×3π28=3π34\dfrac{2\pi }{\dfrac{8}{3{{\pi }^{2}}}}=\dfrac{2\pi \times 3{{\pi }^{2}}}{8}=\dfrac{3{{\pi }^{3}}}{4}
So, we get the period of the function f(x) as 3π34\dfrac{3{{\pi }^{3}}}{4}.

So, the correct answer is “Option B”.

Note: There is a possibility of making a mistake while solving this problem by taking the period of cosx as π2\dfrac{\pi }{2}. But it is wrong. For any function sinx or cosx, the period of the function is π\pi . Another mistake possible while solving this question is one might take the formula for cos2x as cos2θ=2sin2θ1\cos 2\theta =2{{\sin }^{2}}\theta -1. But the actual formula is cos2θ=12sin2θ\cos 2\theta =1-2{{\sin }^{2}}\theta .