Solveeit Logo

Question

Question: The period of the function \[f\left( x \right) = \left| {\sin x} \right| + \left| {\cos x} \right|\]...

The period of the function f(x)=sinx+cosxf\left( x \right) = \left| {\sin x} \right| + \left| {\cos x} \right| is,
1.π\pi
2.π2\dfrac{\pi }{2}
3.2π2\pi
4.None of these

Explanation

Solution

In the above solution, we are given a combination of modulus function and trigonometric function of the variable xx . The given function is written as f(x)=sinx+cosxf\left( x \right) = \left| {\sin x} \right| + \left| {\cos x} \right| . We need to determine the period of the above given function of xx . In order to approach the solution, first we need to consider the mathematical definition of the time period of a function. When we have a function such that f(x)=f(x+T)f\left( x \right) = f\left( {x + {\rm T}} \right) , then we say that the period of this function f(x)f\left( x \right) is TT . Hence, we have find a time period TT such that it gives us the equation:
f(x)=sinx+cosx=f(x+T)=sinx+T+cosx+T\Rightarrow f\left( x \right) = \left| {\sin x} \right| + \left| {\cos x} \right| = f\left( {x + T} \right) = \left| {\sin x + T} \right| + \left| {\cos x + T} \right|

Complete answer:
Given that, a function of xx which is written as,
f(x)=sinx+cosx\Rightarrow f\left( x \right) = \left| {\sin x} \right| + \left| {\cos x} \right|
Here, we know that the range of function sinx\left| {\sin x} \right| is [0,1]\left[ {0,1} \right] ,
Whereas, the range of the function cosx\left| {\cos x} \right| is also [0,1]\left[ {0,1} \right] .
Hence, the period of both the functions sinx\left| {\sin x} \right| and cosx\left| {\cos x} \right| is equal to π\pi .
So when we consider T=π2T = \dfrac{\pi }{2} , then we have the function f(x+T)f\left( {x + T} \right) as
f(x+π2)=sin(π2+x)+cos(π2+x)\Rightarrow f\left( {x + \dfrac{\pi }{2}} \right) = \left| {\sin \left( {\dfrac{\pi }{2} + x} \right)} \right| + \left| {\cos \left( {\dfrac{\pi }{2} + x} \right)} \right|
That gives us the equation as,,
f(x+π2)=cosx+sinx\Rightarrow f\left( {x + \dfrac{\pi }{2}} \right) = \left| { - \cos x} \right| + \left| {\sin x} \right|
That can also be written as,
f(x+π2)=cosx+sinx\Rightarrow f\left( {x + \dfrac{\pi }{2}} \right) = \left| {\cos x} \right| + \left| {\sin x} \right|
That gives us,
f(x+π2)=sinx+cosx\Rightarrow f\left( {x + \dfrac{\pi }{2}} \right) = \left| {\sin x} \right| + \left| {\cos x} \right|
Hence, we have
f(x+π2)=f(x)\Rightarrow f\left( {x + \dfrac{\pi }{2}} \right) = f\left( x \right)
Therefore, the period of the function f(x)f\left( x \right) is T=π2T = \dfrac{\pi }{2} .

So the correct option is (2).

Note:
The distance between the repetition of any function is known as the period of the function. For a trigonometric function, the length of one complete cycle is called a period. For any trigonometric graph function, we can take x=0x = 0 as the starting point. The time period of the sine function and the cosine function is 2π2\pi .