Solveeit Logo

Question

Question: The period of \(\sin^{4}x + \cos^{4}x\) is...

The period of sin4x+cos4x\sin^{4}x + \cos^{4}x is

A

π2\frac{\pi}{2}

B

π\pi

C

2π2\pi

D

3π2\frac{3\pi}{2}

Answer

π2\frac{\pi}{2}

Explanation

Solution

(sin2x)2+(cos2x)2=12sin2xcos2x=1142sin22x=1(1cos4x4)=34+14cos4x(\sin^{2}x)^{2} + (\cos^{2}x)^{2} = 1 - 2\sin^{2} ⥂ x\cos^{2}x = 1 - \frac{1}{4}2\sin^{2}2x = 1 - \left( \frac{1 - \cos 4x}{4} \right) = \frac{3}{4} + \frac{1}{4}\cos 4xTherefore period is 2π4=π2.\frac{2\pi}{4} = \frac{\pi}{2}.

Trick: f(x)=sin4x+cos4x\mathbf{f(x) =}\mathbf{\sin}^{\mathbf{4}}\mathbf{x}\mathbf{+}\mathbf{\cos}^{\mathbf{4}}\mathbf{x}

f(π2+x)=sin4(π2+x)+cos4(π2+x)f\left( \frac{\pi}{2} + x \right) = \sin^{4}\left( \frac{\pi}{2} + x \right) + \cos^{4}\left( \frac{\pi}{2} + x \right)

f(π2+x)=cos4x+sin4x=f(x)\mathbf{f}\left( \frac{\mathbf{\pi}}{\mathbf{2}}\mathbf{+ x} \right)\mathbf{=}\mathbf{\cos}^{\mathbf{4}}\mathbf{x}\mathbf{+}\mathbf{\sin}^{\mathbf{4}}\mathbf{x}\mathbf{= f(x)} Hence the period is π2.\frac{\pi}{2}.