Solveeit Logo

Question

Question: The period of \({{\sin }^{4}}x+{{\cos }^{4}}x\) is. A. \(\dfrac{\pi }{2}\) B. \(\pi \) C. \(2\...

The period of sin4x+cos4x{{\sin }^{4}}x+{{\cos }^{4}}x is.
A. π2\dfrac{\pi }{2}
B. π\pi
C. 2π2\pi
D. None of these

Explanation

Solution

Hint: We will be using the concept of function to solve the problem. We will be using the periodicity of sine and cosine function and will also be utilizing the general condition for any function to be periodic.

Complete step-by-step solution -

We have been given a function f(x)=sin4x+cos4xf\left( x \right)={{\sin }^{4}}x+{{\cos }^{4}}x.
Now, we have to find the period of f(x)f\left( x \right).
We know that periodic functions are those who repeat their value after a fixed constant interval called period.
In generally a function f(x)f\left( x \right) such that,
f(T+x)=f(x)f\left( T+x \right)=f\left( x \right)
Then T is the period of the function. For example, if
f(x)=sinxf\left( x \right)=\sin x
We know that sin(2π+x)=sinx\sin \left( 2\pi +x \right)=\sin x
Also, if f(x)=sinxf\left( x \right)=\sin x
Then,
f(π+x)=sin(π+x)2 =(sin(x))2 =sin2x f(π+x)=f(x) \begin{aligned} & f\left( \pi +x \right)=\sin {{\left( \pi +x \right)}^{2}} \\\ & ={{\left( -\sin \left( x \right) \right)}^{2}} \\\ & ={{\sin }^{2}}x \\\ & \Rightarrow f\left( \pi +x \right)=f\left( x \right) \\\ \end{aligned}
And therefore the period of sin2x is π{{\sin }^{2}}x\ is\ \pi .
Similarly, the period of cos2x{{\cos }^{2}}x is also π\pi .
Now, we have to find the period of f(x)=sin4x+cos4xf\left( x \right)={{\sin }^{4}}x+{{\cos }^{4}}x.
f(x)=sin4x+cos4x f(T+x)=sin4(T+x)+cos4(T+x) \begin{aligned} & f\left( x \right)={{\sin }^{4}}x+{{\cos }^{4}}x \\\ & f\left( T+x \right)={{\sin }^{4}}\left( T+x \right)+{{\cos }^{4}}\left( T+x \right) \\\ \end{aligned}
Now, if we put T=π2T=\dfrac{\pi }{2}, we see that,
f(π2+x)=sin4(π2+x)+cos4(π2+x)f\left( \dfrac{\pi }{2}+x \right)={{\sin }^{4}}\left( \dfrac{\pi }{2}+x \right)+{{\cos }^{4}}\left( \dfrac{\pi }{2}+x \right)
Also, we know that,
sin(π2+x)=sin(x) cos(π2+x)=cos(x) \begin{aligned} & \sin \left( \dfrac{\pi }{2}+x \right)=\sin \left( x \right) \\\ & \cos \left( \dfrac{\pi }{2}+x \right)=-\cos \left( x \right) \\\ \end{aligned}
f(π2+x)=cos4x+sin4x\Rightarrow f\left( \dfrac{\pi }{2}+x \right)={{\cos }^{4}}x+{{\sin }^{4}}x
Now, since,
f(x)=f(π2+x)f\left( x \right)=f\left( \dfrac{\pi }{2}+x \right)
Therefore, the period is π2\dfrac{\pi }{2}.

Note: To solve these types of functions it is advised to remember the period of function like sin x, cos x which is 2π2\pi . Also, it is noted that the for sin4x+cos4xf(π+x)=f(x){{\sin }^{4}}x+{{\cos }^{4}}xf\left( \pi +x \right)=f\left( x \right). Also, but π\pi is still not period because period is always the least value of T which satisfies f(T+x)=f(x)f\left( T+x \right)=f\left( x \right)