Solveeit Logo

Question

Question: The period of \(|\sin 2x|\) is...

The period of sin2x|\sin 2x| is

A

π4\frac{\pi}{4}

B

π2\frac{\pi}{2}

C

π\pi

D

2π2\pi

Answer

π2\frac{\pi}{2}

Explanation

Solution

Here sin2x=sin22x=(1cos4x)2|\sin 2x| = \sqrt{\sin^{2}2x} = \sqrt{\frac{(1 - \cos 4x)}{2}}

Period of cos4x\cos 4x is π2\frac{\pi}{2}. Hence, period of sin2x|\sin 2x| will be π2\frac{\pi}{2}

Trick : \because sinx\sin x has period =2π= 2\pi \Rightarrow sin2x\sin 2x has period =2π2=π= \frac{2\pi}{2} = \pi

Now, if f(x)f(x) has period pp then f(x)|f(x)| has period p2\frac{p}{2}

sin2x\Rightarrow |\sin 2x| has period =π2.= \frac{\pi}{2}.