Solveeit Logo

Question

Question: The period of oscillation of a simple pendulum of length \(l\) is given by \(T=2\pi \sqrt{l/g}\). Th...

The period of oscillation of a simple pendulum of length ll is given by T=2πl/gT=2\pi \sqrt{l/g}. The length ll is about 10cm10cm and is known to 1mm1mm accuracy. The period of oscillation is about 0.5s0.5s. The time of 100100 oscillations has been measured with a stop watch of 1s1s resolution. Find the percentage error in the determination of gg.

Explanation

Solution

This problem can be solved by writing the mathematical formula for gg by using the given formula for TT and writing the percentage error in gg in terms of the percentage error in ll and the percentage error in TT.

Complete step-by-step answer:
Let us first write the equation for the percentage error in a variable zz that is written in terms of two other variables xx and yy. Now, if
z=xmynz={{x}^{m}}{{y}^{n}}
where m,nm,n are real numbers,
The percentage error Δzz(in !!%!! )\dfrac{\Delta z}{z}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right) in zz is given by
Δzz(in !!%!! )=mΔxx(in !!%!! )+nΔyy(in !!%!! )\dfrac{\Delta z}{z}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right)=\left| m\dfrac{\Delta x}{x}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right) \right|+\left| n\dfrac{\Delta y}{y}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right) \right| --(1)
Where Δxx(in !!%!! ),Δyy(in !!%!! )\dfrac{\Delta x}{x}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right),\dfrac{\Delta y}{y}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right) are the percentage errors in x,yx,y respectively.
Now, let us analyze the question.
The time period of the pendulum is T=0.5sT=0.5s.
Now the time required for 100100 oscillations is t=T×100=0.5×100=50st=T\times 100=0.5\times 100=50s
Now, since the resolution for the stop watch is 1s1s, the error Δt\Delta t in tt is Δt=1s\Delta t=1s.
Now, T=t100T=\dfrac{t}{100}
ΔT=Δt100=1100=0.01s\therefore \Delta T=\dfrac{\Delta t}{100}=\dfrac{1}{100}=0.01s
ΔTT(in !!%!! )=0.010.5×100=0.02×100=2%\therefore \dfrac{\Delta T}{T}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right)=\dfrac{0.01}{0.5}\times 100=0.02\times 100=2\% --(2)
Now, the measured length of the pendulum is l=10cm=0.1ml=10cm=0.1m (10cm=0.1m)\left( \because 10cm=0.1m \right)
Now, the error Δl\Delta l in the measured length is the accuracy of the scale, that is,
Δl=1mm=0.001m\Delta l=1mm=0.001m (1mm=0.001m)\left( \because 1mm=0.001m \right)
Δll(in !!%!! )=0.0010.1×100=1%\therefore \dfrac{\Delta l}{l}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right)=\dfrac{0.001}{0.1}\times 100=1\% --(3)
Now, it is given that the time period TT, length ll and acceleration due to gravity gg for a simple pendulum are related as
T=2πlgT=2\pi \sqrt{\dfrac{l}{g}}
Squaring both sides we get
T2=(2πlg)2=4π2lg{{T}^{2}}={{\left( 2\pi \sqrt{\dfrac{l}{g}} \right)}^{2}}=4{{\pi }^{2}}\dfrac{l}{g}
g=4π2lT2\therefore g=4{{\pi }^{2}}\dfrac{l}{{{T}^{2}}} --(4)
Using (1) for (4), we get
Δgg(in !!%!! )=Δ4π24π2(in !!%!! )+Δll(in !!%!! )+2ΔTT(in !!%!! )\dfrac{\Delta g}{g}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right)=\left| \dfrac{\Delta 4{{\pi }^{2}}}{4{{\pi }^{2}}}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right) \right|+\left| \dfrac{\Delta l}{l}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right) \right|+\left| -2\dfrac{\Delta T}{T}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right) \right|
Putting the values in the above equation we get
Δgg(in !!%!! )=0+1+2(2)=0+1+4=5%\dfrac{\Delta g}{g}\left( \text{in }\\!\\!\%\\!\\!\text{ } \right)=\left| 0 \right|+\left| 1 \right|+\left| -2\left( 2 \right) \right|=0+1+4=5\% (Δ4π2=0, since it is a constant and does not change)\left( \because \Delta 4{{\pi }^{2}}=0,\text{ since it is a constant and does not change} \right)
Therefore, we have got the required percentage error in the determination of gg as 5%5\%.

Note: Students must note that in formula (1), it is imperative that they take the absolute values for the percentage errors of the physical quantities as a function of whom our required physical quantity is written. This is because the error can be positive or negative but we have to write the error in such a way so that all the errors add up and give the maximum relative or percentage errors.