Solveeit Logo

Question

Question: The period of oscillation of a simple pendulum is given by \(T = 2 \pi \sqrt { \frac { l } { g } }\...

The period of oscillation of a simple pendulum is given by T=2πlgT = 2 \pi \sqrt { \frac { l } { g } } where l is about 100 cm and is known to have 1mm accuracy. The period is about 2s. The time of 100 oscillations is measured by a stop watch of least count 0.1 s. The percentage error in g is

A

(a) 0.1%

A

(b) 1%

A

(c) 0.2%

A

(d) 0.8%

Explanation

Solution

(c)

Sol. T=2π1/g\mathrm { T } = 2 \pi \sqrt { 1 / \mathrm { g } } T2=4π2l/g\Rightarrow T ^ { 2 } = 4 \pi ^ { 2 } l / g g=4π2lT2\Rightarrow g = \frac { 4 \pi ^ { 2 } l } { T ^ { 2 } }

Here % error in l = 1 mm100 cm×100=0.1100×100=0.1%\frac { 1 \mathrm {~mm} } { 100 \mathrm {~cm} } \times 100 = \frac { 0.1 } { 100 } \times 100 = 0.1 \% and % error in T = 0.12×100×100=0.05%\frac { 0.1 } { 2 \times 100 } \times 100 = 0.05 \%

∴ % error in g = % error in l + 2(% error in T)

=0.1+2×0.05= 0.1 + 2 \times 0.05 = 0.2 %

( T=2πl/gT = 2 \pi \sqrt { l / g } T2=4π2l/g\Rightarrow T ^ { 2 } = 4 \pi ^ { 2 } l / g g=4π2lT2\Rightarrow g = \frac { 4 \pi ^ { 2 } l } { T ^ { 2 } }