Solveeit Logo

Question

Question: The period of oscillation of a simple pendulum is \(\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm {...

The period of oscillation of a simple pendulum is T=2πLg\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm { L } } { \mathrm { g } } } . Measured value of L is 10 cm know to 1 mm accuracy and time for 100 oscillations of the pendulum is found to be 50 s using a wrist watch of 1 s resolution. What is the accuracy in the determination of g?

A

(a) 2%

A

(b) 3%

A

(c) 4%

A

(d) 5%

Explanation

Solution

(d)

Sol. Here , T=2πLg\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm { L } } { \mathrm { g } } }

Squaring both sides, we get

T2=4π2LgT ^ { 2 } = \frac { 4 \pi ^ { 2 } L } { g } or 4π2LT2\frac { 4 \pi ^ { 2 } L } { T ^ { 2 } }

The relative error in g is

Δgg=ΔLL+2ΔTT\frac { \Delta \mathrm { g } } { \mathrm { g } } = \frac { \Delta \mathrm { L } } { \mathrm { L } } + 2 \frac { \Delta \mathrm { T } } { \mathrm { T } }

Here, T=tn\mathrm { T } = \frac { \mathrm { t } } { \mathrm { n } } and ΔT=Δtn\Delta \mathrm { T } = \frac { \Delta \mathrm { t } } { \mathrm { n } }

\therefore ΔTT=Δtt\frac { \Delta \mathrm { T } } { \mathrm { T } } = \frac { \Delta \mathrm { t } } { \mathrm { t } }

The errors in both L and t are the least count errors

Δgg=0.110+2(150)=0.01+0.04=0.05\therefore \frac { \Delta \mathrm { g } } { \mathrm { g } } = \frac { 0.1 } { 10 } + 2 \left( \frac { 1 } { 50 } \right) = 0.01 + 0.04 = 0.05

The percentage error in g is

Δgg×100=ΔLL×100+2(ΔTT)×100\frac { \Delta g } { g } \times 100 = \frac { \Delta L } { L } \times 100 + 2 \left( \frac { \Delta \mathrm { T } } { \mathrm { T } } \right) \times 100 =[ΔLL+2(ΔTT)]×100=0.05×100=5%= \left[ \frac { \Delta \mathrm { L } } { \mathrm { L } } + 2 \left( \frac { \Delta \mathrm { T } } { \mathrm { T } } \right) \right] \times 100 = 0.05 \times 100 = 5 \%