Solveeit Logo

Question

Question: The period of \(\lambda\), \(- \lambda\) is....

The period of λ\lambda, λ- \lambda is.

A

sinλ+cospλ=1\sin\lambda + \cos p\lambda = 1

B

sinλ+cospλ=1- \sin\lambda + \cos p\lambda = 1

C

sinλ=0\sin\lambda = 0

D

None of these

Answer

sinλ=0\sin\lambda = 0

Explanation

Solution

f(x)=sin(πxn1)+cos(πxn)f ( x ) = \sin \left( \frac { \pi x } { n - 1 } \right) + \cos \left( \frac { \pi x } { n } \right)

Period of sin(πxn1)=2π(πn1)=2(n1)\sin \left( \frac { \pi x } { n - 1 } \right) = \frac { 2 \pi } { \left( \frac { \pi } { n - 1 } \right) } = 2 ( n - 1 )

and period of cos(πxn)=2π(πn)=2n\cos \left( \frac { \pi x } { n } \right) = \frac { 2 \pi } { \left( \frac { \pi } { n } \right) } = 2 n

Hence period of f(x)f ( x ) is L.C.M. of 2n2 n and 2(n1)2 ( n - 1 )

2n(n1)\Rightarrow 2 n ( n - 1 ).