Solveeit Logo

Question

Question: The period of \(f(x) = x - \lbrack x\rbrack,\) if it is periodic, is...

The period of f(x)=x[x],f(x) = x - \lbrack x\rbrack, if it is periodic, is

A

f(x)f(x) is not periodic

B

12\frac{1}{2}

C

1

D

2

Answer

f(x)f(x) is not periodic

Explanation

Solution

Let f(x)f(x) be periodic with period T. Then,

f(x+T)=f(x)f(x + T) = f(x) for all xRx \in Rx+T[x+T]=x[x]x + T - \lbrack x + T\rbrack = x - \lbrack x\rbrack for all xRx \in Rx+Tx=[x+T][x]x + T - x = \lbrack x + T\rbrack - \lbrack x\rbrack

[x+T][x]=T\lbrack x + T\rbrack - \lbrack x\rbrack = T for all xRx \in RT=1,2,3,4,........T = 1,2,3,4,........

The smallest value of T satisfying,

f(x+T)=f(x)f(x + T) = f(x) for all xRx \in R is 1.

Hence f(x)=x[x]f(x) = x - \lbrack x\rbrack has period 1.