Solveeit Logo

Question

Question: The period of \(f(x) = \sin\left( \frac{\pi x}{n - 1} \right) + \cos\left( \frac{\pi x}{n} \right),n...

The period of f(x)=sin(πxn1)+cos(πxn),nZ,n>2f(x) = \sin\left( \frac{\pi x}{n - 1} \right) + \cos\left( \frac{\pi x}{n} \right),n \in Z,n > 2 is

A

2πn(n1)2\pi n(n - 1)

B

4n(n1)4n(n - 1)

C

2n(n1)2n(n - 1)

D

None

Answer

2n(n1)2n(n - 1)

Explanation

Solution

f(x)=sin(πxn1)+cos(πxn)f(x) = \sin\left( \frac{\pi x}{n - 1} \right) + \cos\left( \frac{\pi x}{n} \right)

Period of sin(πxn1)=2π(πn1)=2(n1)\sin\left( \frac{\pi x}{n - 1} \right) = \frac{2\pi}{\left( \frac{\pi}{n - 1} \right)} = 2(n - 1) and period of cos(πxn)=2π(πn)=2n\cos\left( \frac{\pi x}{n} \right) = \frac{2\pi}{\left( \frac{\pi}{n} \right)} = 2n

Hence period of f(x)f(x) is LCM of 2n2n and 2(n1)2n(n1)2(n - 1) \Rightarrow 2n(n - 1).