Solveeit Logo

Question

Question: The period of function \[f(x) = \dfrac{{\sin 8x\cos x - \sin 6x\cos 3x}}{{\cos 2x\cos - \sin 3x\sin ...

The period of function f(x)=sin8xcosxsin6xcos3xcos2xcossin3xsin4xf(x) = \dfrac{{\sin 8x\cos x - \sin 6x\cos 3x}}{{\cos 2x\cos - \sin 3x\sin 4x}} is

  1. π\pi
  2. 2π2\pi
  3. π2\dfrac{\pi }{2}
  4. None of these
Explanation

Solution

Here in this question we have to determine the period of a trigonometric function. Since the given trigonometric function is a difference or sum of a product of the trigonometric functions. So on considering the transformation formulas we are going to obtain the solution for the given question.

Complete step by step answer:
In trigonometry we have 6 trigonometric ratios namely, sine, cosine, tangent, cosecant, secant and cotangent. These ratios are abbreviated as sin, cos, tan, csc, sec and cot.
Now consider the given question
f(x)=sin8xcosxsin6xcos3xcos2xcosxsin3xsin4x\Rightarrow f(x) = \dfrac{{\sin 8x\cos x - \sin 6x\cos 3x}}{{\cos 2x\cos x - \sin 3x\sin 4x}}
By the transformations formulas we have sinacosb=12[sin(a+b)+sin(ab)]\sin a\cos b = \dfrac{1}{2}\left[ {\sin (a + b) + \sin (a - b)} \right], cosacosb=12[cos(a+b)+cos(ab)]\cos a\cos b = \dfrac{1}{2}\left[ {\cos (a + b) + \cos (a - b)} \right] and sinasinb=12[cos(a+b)cos(ab)]\sin a\sin b = - \dfrac{1}{2}\left[ {\cos (a + b) - \cos (a - b)} \right], where a and b represents the angle. Now the above function can be written as
f(x)=12(sin(8x+x)+sin(8xx))12(sin(6x+3x)+sin(6x3x))12(cos(2x+x)+cos(2xx))+12(cos(3x+4x)cos(4x3x))\Rightarrow f(x) = \dfrac{{\dfrac{1}{2}\left( {\sin (8x + x) + \sin (8x - x)} \right) - \dfrac{1}{2}\left( {\sin (6x + 3x) + \sin (6x - 3x)} \right)}}{{\dfrac{1}{2}\left( {\cos (2x + x) + \cos (2x - x)} \right) + \dfrac{1}{2}\left( {\cos (3x + 4x) - \cos (4x - 3x)} \right)}}
On simplifying we have
f(x)=12(sin9x+sin7x)12(sin9x+sin3x)12(cos3x+cosx)+12(cos7xcosx)\Rightarrow f(x) = \dfrac{{\dfrac{1}{2}\left( {\sin 9x + \sin 7x} \right) - \dfrac{1}{2}\left( {\sin 9x + \sin 3x} \right)}}{{\dfrac{1}{2}\left( {\cos 3x + \cos x} \right) + \dfrac{1}{2}\left( {\cos 7x - \cos x} \right)}}
Take 12\dfrac{1}{2} as common in both numerator and denominator and we have
f(x)=12[(sin9x+sin7x)(sin9x+sin3x)]12[(cos3x+cosx)+(cos7xcosx)]\Rightarrow f(x) = \dfrac{{\dfrac{1}{2}\left[ {\left( {\sin 9x + \sin 7x} \right) - \left( {\sin 9x + \sin 3x} \right)} \right]}}{{\dfrac{1}{2}\left[ {\left( {\cos 3x + \cos x} \right) + \left( {\cos 7x - \cos x} \right)} \right]}}
On cancelling the terms we have
f(x)=(sin9x+sin7x)(sin9x+sin3x)(cos3x+cosx)+(cos7xcosx)\Rightarrow f(x) = \dfrac{{\left( {\sin 9x + \sin 7x} \right) - \left( {\sin 9x + \sin 3x} \right)}}{{\left( {\cos 3x + \cos x} \right) + \left( {\cos 7x - \cos x} \right)}}
On applying the sign conventions, the above function can be written as
f(x)=sin9x+sin7xsin9xsin3xcos3x+cosx+cos7xcosx\Rightarrow f(x) = \dfrac{{\sin 9x + \sin 7x - \sin 9x - \sin 3x}}{{\cos 3x + \cos x + \cos 7x - \cos x}}
On simplifying we have
f(x)=sin7xsin3xcos3x+cos7x\Rightarrow f(x) = \dfrac{{\sin 7x - \sin 3x}}{{\cos 3x + \cos 7x}}
By the transformations formulas we have sinCsinD=2cos(C+D2)sin(CD2)\sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right) and cosC+cosD=2cos(C+D2)cos(CD2)\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right). So applying these formulas to the above function we have
f(x)=2cos(7x+3x2)sin(7x3x2)2cos(3x+7x2)cos(3x7x2)\Rightarrow f(x) = \dfrac{{2\cos \left( {\dfrac{{7x + 3x}}{2}} \right)\sin \left( {\dfrac{{7x - 3x}}{2}} \right)}}{{2\cos \left( {\dfrac{{3x + 7x}}{2}} \right)\cos \left( {\dfrac{{3x - 7x}}{2}} \right)}}
On simplifying we have
f(x)=2cos(10x2)sin(4x2)2cos(10x2)cos(4x2)\Rightarrow f(x) = \dfrac{{2\cos \left( {\dfrac{{10x}}{2}} \right)\sin \left( {\dfrac{{4x}}{2}} \right)}}{{2\cos \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right)}}
On cancelling terms and on dividing we have
f(x)=cos5xsin2xcos5xcos2x\Rightarrow f(x) = \dfrac{{\cos 5x\sin 2x}}{{\cos 5x\cos 2x}}
On cancelling the terms we have
f(x)=sin2xcos2x\Rightarrow f(x) = \dfrac{{\sin 2x}}{{\cos 2x}}
As we know, the ratio of sine trigonometric ratio to the cosine trigonometric ratio is the tangent trigonometric ratio.
This can be written as
f(x)=tan2x\Rightarrow f(x) = \tan 2x
As we know that the period for the tangent trigonometric ratio is π{\pi }
Therefore the period of function f(x)=sin8xcosxsin6xcos3xcos2xcossin3xsin4xf(x) = \dfrac{{\sin 8x\cos x - \sin 6x\cos 3x}}{{\cos 2x\cos - \sin 3x\sin 4x}} is π2\dfrac{\pi }{2}
Here we had angle 2x so the period is π2\dfrac{\pi }{2}.

So, the correct answer is “Option 3”.

Note: The student must know about the transformation formulae. They are defined as follows:
1.sinAcosB =[sin(A+B) + sin(A  B)]1.\,\,sinAcosB{\text{ }} = \left[ {sin\left( {A + B} \right){\text{ }} + {\text{ }}sin\left( {A{\text{ }}-{\text{ }}B} \right)} \right]
2.cosA .sinB =[sin(A+B)   sin(A  B)]2.\,\,cosA{\text{ }}.sinB{\text{ }} = \left[ {sin\left( {A + B} \right){\text{ }}-\;sin\left( {A{\text{ }}-{\text{ }}B} \right)} \right]
3.cosAcosB =[cos(A+B) + cos(A  B)]3.\,\,cosAcosB{\text{ }} = \left[ {cos\left( {A + B} \right){\text{ }} + {\text{ }}cos\left( {A{\text{ }}-{\text{ }}B} \right)} \right]

4.sinA .sinB =[cos(A+B)  cos(A  B)] 5.  sinC + sinD = 2sin(C+D2)cos(CD2) 6.  sinC   sinD = 2cos(C+D2)  sin(CD2) 7.    cosC + cosD = 2cos(C+D2)cos(CD2) 8.  cosC  cosD = 2sin(C+D2)sin(CD2)  4.\,\,sinA{\text{ }}.sinB{\text{ }} = \left[ {cos\left( {A + B} \right){\text{ }}-{\text{ }}cos\left( {A{\text{ }}-{\text{ }}B} \right)} \right] \\\ 5.\;\,\,sinC{\text{ }} + {\text{ }}sinD{\text{ }} = {\text{ }}2sin\left( {\dfrac{{C + D}}{2}} \right)cos\left( {\dfrac{{C - D}}{2}} \right) \\\ 6.\;\,\,sinC{\text{ }}-\;sinD{\text{ }} = {\text{ }}2cos\left( {\dfrac{{C + D}}{2}} \right)\;sin\left( {\dfrac{{C - D}}{2}} \right) \\\ 7.\;\;cosC{\text{ }} + {\text{ }}cosD{\text{ }} = {\text{ }}2cos\left( {\dfrac{{C + D}}{2}} \right)cos\left( {\dfrac{{C - D}}{2}} \right) \\\ 8.\;\,\,cosC{\text{ }}-{\text{ }}cosD{\text{ }} = {\text{ }}-2sin\left( {\dfrac{{C + D}}{2}} \right)sin\left( {\dfrac{{C - D}}{2}} \right) \\\

These formulas are simplified forms of the sum and difference formulas of trigonometric ratios.