Solveeit Logo

Question

Question: The perimeter of the triangle whose vertices have the position vectors \((\mathbf{i} + \mathbf{j} + ...

The perimeter of the triangle whose vertices have the position vectors (i+j+k),(5i+3j3k)(\mathbf{i} + \mathbf{j} + \mathbf{k}),(5\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}) and (2i+5j+9k),(2\mathbf{i} + 5\mathbf{j} + 9\mathbf{k}), is given by

A

15+15715 + \sqrt{157}

B

1515715 - \sqrt{157}

C

15157\sqrt{15} - \sqrt{157}

D

15+157\sqrt{15} + \sqrt{157}

Answer

15+15715 + \sqrt{157}

Explanation

Solution

a=4i+2j4ka=16+16+4=6\mathbf{a} = 4\mathbf{i} + 2\mathbf{j} - 4\mathbf{k} \Rightarrow |\mathbf{a}| = \sqrt{16 + 16 + 4} = 6

b=3i+2j+12kb=144+4+9=157\mathbf{b} = - 3\mathbf{i} + 2\mathbf{j} + 12\mathbf{k} \Rightarrow |\mathbf{b}| = \sqrt{144 + 4 + 9} = \sqrt{157}

c=i4j8kc=64+16+1=9\mathbf{c} = - \mathbf{i} - 4\mathbf{j} - 8\mathbf{k} \Rightarrow |\mathbf{c}| = \sqrt{64 + 16 + 1} = 9

Hence perimeter is 15+157.15 + \sqrt{157}.