Solveeit Logo

Question

Mathematics Question on argand plane

The perimeter of the locus represented by arg (z+izi)=π4\left( \frac{z + i}{z-i}\right) = \frac{\pi}{4} is equal to

A

4π4 \pi

B

2π22 \pi \sqrt{2}

C

2π32 \pi \sqrt{3}

D

2π3\frac{2 \pi}{\sqrt{3}}

Answer

2π22 \pi \sqrt{2}

Explanation

Solution

We have, arg(z+izi)=π4\arg \left(\frac{z+i}{z-i}\right)=\frac{\pi}{4}
Let Z=x+iyZ = x + i y
z+izi=x+iy+ix+iyi\therefore \frac{ z + i }{ z - i } =\frac{ x + i y+ i }{ x + i y- i }
=x+(y+l)ix+(yl)i=\frac{ x +( y + l ) i }{ x +( y - l ) i }
=(x+(y+l)i)(x(yl)i)(x+(y1)i)(x(yl)i)=\frac{( x +( y + l ) i )( x -( y - l ) i )}{( x +(y-1) i )( x -( y - l ) i )}
=x2+y21+(xy+x+xy+x)ix2+(y1)2=\frac{ x ^{2}+ y ^{2}-1+(- x y+ x + x y + x ) i }{ x ^{2}+( y -1)^{2}}
=x2+y2l+2xix2+(yl)2=\frac{ x ^{2}+ y ^{2}- l +2 xi }{ x ^{2}+( y - l )^{2}}
x2+(y1)2x^{2}+(y-1)^{2}
arg(x2+y21+2xix2+(y1)2)=tan1(2xx2+y21)\arg \left(\frac{x^{2}+y^{2}-1+2 x i}{x^{2}+(y-1)^{2}}\right)=\tan ^{-1}\left(\frac{2 x}{x^{2}+y^{2}-1}\right)
tan1(2xx2+y21)=π4\therefore \tan ^{-1}\left(\frac{2 x}{x^{2}+y^{2}-1}\right)=\frac{\pi}{4}
2x=x2+y21\Rightarrow 2 x=x^{2}+y^{2}-1
(x1)2+y2=(2)2\Rightarrow (x-1)^{2}+y^{2}=(\sqrt{2})^{2}
\therefore Locus of arg(z+izi)=π4\arg \left(\frac{z+i}{z-i}\right)=\frac{\pi}{4} is circle,
whose centre (1,0)(1,0) and radius =2=\sqrt{2}
Perimetre of circle =2πr=2π(2)=2 \pi r =2 \pi(\sqrt{2})
=2π2=2 \pi \sqrt{2}