Question
Mathematics Question on argand plane
The perimeter of the locus represented by arg (z−iz+i)=4π is equal to
A
4π
B
2π2
C
2π3
D
32π
Answer
2π2
Explanation
Solution
We have, arg(z−iz+i)=4π
Let Z=x+iy
∴z−iz+i=x+iy−ix+iy+i
=x+(y−l)ix+(y+l)i
=(x+(y−1)i)(x−(y−l)i)(x+(y+l)i)(x−(y−l)i)
=x2+(y−1)2x2+y2−1+(−xy+x+xy+x)i
=x2+(y−l)2x2+y2−l+2xi
x2+(y−1)2
arg(x2+(y−1)2x2+y2−1+2xi)=tan−1(x2+y2−12x)
∴tan−1(x2+y2−12x)=4π
⇒2x=x2+y2−1
⇒(x−1)2+y2=(2)2
∴ Locus of arg(z−iz+i)=4π is circle,
whose centre (1,0) and radius =2
Perimetre of circle =2πr=2π(2)
=2π2