Solveeit Logo

Question

Question: The perimeter of the locus of the point at which the two circles $x^2 + y^2 = 1$ and $(x - 4)^2 + y^...

The perimeter of the locus of the point at which the two circles x2+y2=1x^2 + y^2 = 1 and (x4)2+y2=4(x - 4)^2 + y^2 = 4 subtend equal angles is

A

(43)π(\frac{4}{3})\pi

B

(83)π(\frac{8}{3})\pi

C

(23)π(\frac{2}{3})\pi

D

(163)π(\frac{16}{3})\pi

Answer

(163)π(\frac{16}{3})\pi

Explanation

Solution

Let the two circles be C1:x2+y2=1C_1: x^2 + y^2 = 1 with center O1=(0,0)O_1 = (0, 0) and radius r1=1r_1 = 1, and C2:(x4)2+y2=4C_2: (x - 4)^2 + y^2 = 4 with center O2=(4,0)O_2 = (4, 0) and radius r2=2r_2 = 2.

Let P(x,y)P(x, y) be a point on the locus. The angle subtended by a circle of radius rr at an external point PP at a distance dd from the center is 2α2\alpha, where sinα=rd\sin \alpha = \frac{r}{d}.

For C1C_1, the distance from P(x,y)P(x, y) to O1(0,0)O_1(0, 0) is d1=x2+y2d_1 = \sqrt{x^2 + y^2}. The angle subtended is 2α12\alpha_1, where sinα1=r1d1=1x2+y2\sin \alpha_1 = \frac{r_1}{d_1} = \frac{1}{\sqrt{x^2 + y^2}}. For C2C_2, the distance from P(x,y)P(x, y) to O2(4,0)O_2(4, 0) is d2=(x4)2+y2d_2 = \sqrt{(x - 4)^2 + y^2}. The angle subtended is 2α22\alpha_2, where sinα2=r2d2=2(x4)2+y2\sin \alpha_2 = \frac{r_2}{d_2} = \frac{2}{\sqrt{(x - 4)^2 + y^2}}.

The condition that the two circles subtend equal angles at PP implies 2α1=2α22\alpha_1 = 2\alpha_2, so α1=α2\alpha_1 = \alpha_2. Since PP must be external to both circles for the angles to be defined as above, d1>r1d_1 > r_1 and d2>r2d_2 > r_2, which means 0<sinα1<10 < \sin \alpha_1 < 1 and 0<sinα2<10 < \sin \alpha_2 < 1. Thus, α1\alpha_1 and α2\alpha_2 are acute angles.

Equating the sines: sinα1=sinα2\sin \alpha_1 = \sin \alpha_2 1d1=2d2\frac{1}{d_1} = \frac{2}{d_2} 1x2+y2=2(x4)2+y2\frac{1}{\sqrt{x^2 + y^2}} = \frac{2}{\sqrt{(x - 4)^2 + y^2}} Squaring both sides: 1x2+y2=4(x4)2+y2\frac{1}{x^2 + y^2} = \frac{4}{(x - 4)^2 + y^2} (x4)2+y2=4(x2+y2)(x - 4)^2 + y^2 = 4(x^2 + y^2) Expanding and rearranging: x28x+16+y2=4x2+4y2x^2 - 8x + 16 + y^2 = 4x^2 + 4y^2 3x2+3y2+8x16=03x^2 + 3y^2 + 8x - 16 = 0 Dividing by 3: x2+y2+83x163=0x^2 + y^2 + \frac{8}{3}x - \frac{16}{3} = 0 Completing the square for the xx terms: (x2+83x)+y2=163\left(x^2 + \frac{8}{3}x\right) + y^2 = \frac{16}{3} (x+43)2(43)2+y2=163\left(x + \frac{4}{3}\right)^2 - \left(\frac{4}{3}\right)^2 + y^2 = \frac{16}{3} (x+43)2+y2=163+169\left(x + \frac{4}{3}\right)^2 + y^2 = \frac{16}{3} + \frac{16}{9} (x+43)2+y2=48+169\left(x + \frac{4}{3}\right)^2 + y^2 = \frac{48 + 16}{9} (x+43)2+y2=649\left(x + \frac{4}{3}\right)^2 + y^2 = \frac{64}{9} This is the equation of a circle with center C=(43,0)C = \left(-\frac{4}{3}, 0\right) and radius R=649=83R = \sqrt{\frac{64}{9}} = \frac{8}{3}.

The perimeter of this locus circle is 2πR2\pi R. Perimeter =2π(83)=16π3= 2\pi \left(\frac{8}{3}\right) = \frac{16\pi}{3}.

The analysis in the raw solution confirms that all points on this locus are indeed external to both original circles, validating the method used.