Solveeit Logo

Question

Question: The perimeter of a triangle is 20 and the points (-2, -3) and (-2, 3) are two of the vertices of it....

The perimeter of a triangle is 20 and the points (-2, -3) and (-2, 3) are two of the vertices of it. Then the locus of third vertex is:

A

(x2)249+y240=1\frac{(x - 2)^{2}}{49} + \frac{y^{2}}{40} = 1

B

(x+2)249+y240=1\frac{(x + 2)^{2}}{49} + \frac{y^{2}}{40} = 1

C

(x+2)240+y249=1\frac{(x + 2)^{2}}{40} + \frac{y^{2}}{49} = 1

D

(x2)240+y249=1\frac{(x - 2)^{2}}{40} + \frac{y^{2}}{49} = 1

Answer

(x+2)240+y249=1\frac{(x + 2)^{2}}{40} + \frac{y^{2}}{49} = 1

Explanation

Solution

Let the third vertex be

(h+2)2+(k+3)2+(h+2)2+(k3)2+6=20\sqrt{(h + 2)^{2} + (k + 3)^{2}} + \sqrt{(h + 2)^{2} + (k - 3)^{2}} + 6 = 20.

Squaring and simplifying, we get 49 (h + 2)2 + 40k2 = 40 x 49.

(h+2)240+k249=1\frac{(h + 2)^{2}}{40} + \frac{k^{2}}{49} = 1

So, locus of (h, k) is

(x+2)240+y249=1\frac{(x + 2)^{2}}{40} + \frac{y^{2}}{49} = 1.