Solveeit Logo

Question

Question: The perimeter of a sector is constant. If its area is to be maximum, then the sectorial angle is A...

The perimeter of a sector is constant. If its area is to be maximum, then the sectorial angle is
A. π2\dfrac{\pi}{2}
B.π4\dfrac{\pi}{4}
C.4c4^c
D.2c2^c

Explanation

Solution

Firstly, we will let the radius be rr and sectorial angle be θ\theta . Given that, the perimeter of the sector is constant. Substitute the value of radius in the formula of area of the sector. Then, differentiate both sides with respect to θ\theta . As the area is maximum so, we will put the differential value equal to zero and obtain the value of θ\theta . If the differentiated value is negative, then the area is maximum and the value of θ\theta is correct otherwise not.

Complete step-by-step answer:
Let that the radius of the circle is rr and the sectorial angle be θ\theta .
We draw a figure,

Now, the perimeter of the sector is given by 2r+rθ2r + r\theta , according to the question, the perimeter of the sector is constant.
2r+rθ=k2r + r\theta = k
We will evaluate the value of rr ,
r=k2+θ\Rightarrow r = \dfrac{k}{{2 + \theta }}
The area of sector is denoted by A and given by
A=12r2θA = \dfrac{1}{2}{r^2}\theta
Now, substitute the value of radius of the above formula of area,
We get,
A=k22×θ(θ+2)2A = \dfrac{{{k^2}}}{2} \times \dfrac{\theta }{{{{(\theta + 2)}^2}}}
We will differentiate the area on both side with respect to θ\theta using the formula,
d(uv)dx=v(dudx)u(dvdx)v2\dfrac{{d\left( {\dfrac{u}{v}} \right)}}{{dx}} = \dfrac{{v\left( {\dfrac{{du}}{{dx}}} \right) - u\left( {\dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}
We get,
\ \Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left\\{ {\dfrac{{{{(\theta + 2)}^2} - 2\theta (\theta + 2)}}{{{{(\theta + 2)}^4}}}} \right\\} \\\ \Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left( {\dfrac{{(\theta + 2)(\theta + 2 - 2\theta )}}{{{{(\theta + 2)}^4}}}} \right) \\\ \Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left( {\dfrac{{2 - \theta }}{{{{(\theta + 2)}^3}}}} \right)...........eq(1) \\\ \
The area has to be maximum so, we will put the value of dAdθ\dfrac{{dA}}{{d\theta }} written as equation (1) equal to zero.
We get,
 dAdθ=0 k22(2θ(θ+2)3)=0 2θ=0 θ=2  \ \Rightarrow \dfrac{{dA}}{{d\theta }} = 0 \\\ \Rightarrow \dfrac{{{k^2}}}{2}\left( {\dfrac{{2 - \theta }}{{{{(\theta + 2)}^3}}}} \right) = 0 \\\ \Rightarrow 2 - \theta = 0 \\\ \Rightarrow \theta = 2 \\\ \
Again differentiate the equation (1) with respect to θ\theta , we get,
 d2Adθ2=k22[2(3)(θ2)4(θ+2)3×1θ×3(θ+2)2[(θ+2)3]2] d2Adθ2=k22[6(θ+2)4θ+23θ(θ+2)4] d2Adθ2=k22[6(θ+2)4+2θ(θ+2)4]  \ \Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{{k^2}}}{2}\left[ {\dfrac{{2( - 3)}}{{{{(\theta - 2)}^4}}} - \dfrac{{{{(\theta + 2)}^3} \times 1 - \theta \times 3{{(\theta + 2)}^2}}}{{{{\left[ {{{\left( {\theta + 2} \right)}^3}} \right]}^2}}}} \right] \\\ \Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{{k^2}}}{2}\left[ {\dfrac{{ - 6}}{{{{(\theta + 2)}^4}}} - \dfrac{{\theta + 2 - 3\theta }}{{{{(\theta + 2)}^4}}}} \right] \\\ \Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(\theta + 2)}^4}}} + \dfrac{{2 - \theta }}{{{{\left( {\theta + 2} \right)}^4}}}} \right] \\\ \
Now, we will substitute the value of θ=2\theta = 2
We have,
 d2Adθ2=k22[6(2+2)4+22(2+2)4] d2Adθ2=k22[6(4)4+0] d2Adθ2=3k2256 d2Adθ20  \ \Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(2 + 2)}^4}}} + \dfrac{{2 - 2}}{{{{(2 + 2)}^4}}}} \right] \\\ \Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(4)}^4}}} + 0} \right] \\\ \Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - 3{k^2}}}{{256}} \\\ \Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} \prec 0 \\\ \
We can conclude that the area is maximum as the double derivative of the area is negative at θ=2C\theta = {2^C} .
Hence, option (D) is correct.

Note: When we remember that the area is maximum when the double derivative is negative and minimum when the double derivative is positive.
We need to find the value of θ\theta to determine that the double derivative is negative or positive. we have to remember the formula of area and the perimeter of the sector.