Solveeit Logo

Question

Physics Question on simple harmonic motion

The path length of oscillation of simple pendulum of length 1 metre is 16 cm. Its maximum velocity is (g=π2m/s2)(g = \pi^2 \, m/s^2)

A

2πcm/s2 \pi \, cm/s

B

4πcm/s4 \pi \, cm/s

C

8πcm/s8 \pi \, cm/s

D

16πcm/s16 \pi \, cm/s

Answer

8πcm/s8 \pi \, cm/s

Explanation

Solution

Given,
Length of the pendulum (l)=1m(l)=1 m
\therefore Amplitude (a)= Path length 2(a)=\frac{\text { Path length }}{2}
=162=8cm=\frac{16}{2}=8 cm
Acceleration due to gravity (g)=π2m/s2(g)=\pi^{2} m / s ^{2}
We know that, time period (T)=2πlg(T)=2 \pi \sqrt{\frac{l}{g}}
=2π1π2=2 \pi \sqrt{\frac{1}{\pi^{2}}}
T=2ππT=\frac{2 \pi}{\pi}
T=2sT=2\,s
\therefore Maximum velocity (vmax)=aω\left(v_{\max }\right)=a \omega
=a×2πT(ω=2πT)= a \times \frac{2 \pi}{T} \left(\because \omega=\frac{2 \pi}{T}\right)
=8×2×π2=8πcm/s= \frac{8 \times 2 \times \pi}{2}=8 \pi cm / s