Solveeit Logo

Question

Question: The path difference between the two waves \(y_{1} = a_{1}\sin\left( \omega t - \frac{2\pi x}{\lambd...

The path difference between the two waves

y1=a1sin(ωt2πxλ)y_{1} = a_{1}\sin\left( \omega t - \frac{2\pi x}{\lambda} \right)andy2=a2cos(ωt2πxλ+φ)y_{2} = a_{2}\cos\left( \omega t - \frac{2\pi x}{\lambda} + \varphi \right) is

A

λ2πφ\frac{\lambda}{2\pi}\varphi

B

λ2π(φ+π2)\frac{\lambda}{2\pi}\left( \varphi + \frac{\pi}{2} \right)

C

2πλ(φπ2)\frac{2\pi}{\lambda}\left( \varphi - \frac{\pi}{2} \right)

D

2πλ(φ)\frac{2\pi}{\lambda}(\varphi)

Answer

λ2π(φ+π2)\frac{\lambda}{2\pi}\left( \varphi + \frac{\pi}{2} \right)

Explanation

Solution

y1=a1sin(ωt2πxλ)y_{1} = a_{1}\sin\left( \omega t - \frac{2\pi x}{\lambda} \right);y2=a2sin(ωt2πxλ+φ+π2)y_{2} = a_{2}\sin\left( \omega t - \frac{2\pi x}{\lambda} + \varphi + \frac{\pi}{2} \right)

Phase difference =(ωt2πxλ+φ+π2)(ωt2πxλ)=(φ+π2)\left( \omega t - \frac{2\pi x}{\lambda} + \varphi + \frac{\pi}{2} \right) - \left( \omega t - \frac{2\pi x}{\lambda} \right) = \left( \varphi + \frac{\pi}{2} \right)

Path difference = λ2π\frac{\lambda}{2\pi}× Phase difference =λ2π= \frac { \lambda } { 2 \pi } (φ+π2)\left( \varphi + \frac{\pi}{2} \right)