Solveeit Logo

Question

Physics Question on wave interference

The path difference between the two waves y1=a1sin(ωt2πxλ)y_{1}=a_{1} \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right) and y2=a2cos(ωt2πxλ+ϕ)y_{2}=a_{2} \cos \left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right) is

A

λ2πϕ\frac{\lambda }{2\pi }\phi

B

λ2π(ϕ+π2)\frac{\lambda }{2\pi }\left( \phi +\frac{\pi }{2} \right)

C

2πλ(ϕπ2)\frac{2\pi }{\lambda }\left( \phi -\frac{\pi }{2} \right)

D

2πλϕ\frac{2\pi }{\lambda }\phi

Answer

λ2π(ϕ+π2)\frac{\lambda }{2\pi }\left( \phi +\frac{\pi }{2} \right)

Explanation

Solution

y1=a1sin(ωt2πxλ)y_{1} =a_{1} \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right) and y2=a2cos(ωt2πxλ+ϕ)y_{2} =a_{2} \cdot \cos \left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right) =a2sin(ωt2πxλ+ϕ+π2)=a_{2} \sin \left(\omega t-\frac{2 \pi x}{\lambda}+\phi+\frac{\pi}{2}\right) So, phase difference =ϕ+π2=\phi+\frac{\pi}{2} and path difference Δ=λ2π(ϕ+π2)\Delta=\frac{\lambda}{2 \pi}\left(\phi+\frac{\pi}{2}\right)