Solveeit Logo

Question

Question: The particular solution of the differential equation \[(1 + logx)\dfrac{{dx}}{{dy}}{\text{ }} - xlog...

The particular solution of the differential equation (1+logx)dxdy xlogx=0(1 + logx)\dfrac{{dx}}{{dy}}{\text{ }} - xlogx = 0
When x=e,y=e2x = e,y = {e^2} is :

A. y=log(xlogx)+(e21) B.  ey=xlogx+e3e C.  xy=elogxe+e3 D.  ylogx=ex  {\mathbf{A}}.{\text{ }}y = log(xlogx) + ({e^2} - 1) \\\ {\mathbf{B}}.\;\,ey = xlogx + {e^3} - e \\\ {\mathbf{C}}.\;\,xy = elogx - e + {e^3} \\\ {\mathbf{D}}.\;\,ylogx = ex \\\
Explanation

Solution

Hint : Separate dydy and dxdx then integrate the equation

Given : In the equation it is given that,
(1+logx)dxdyxlogx=0(1 + logx)\dfrac{{dx}}{{dy}}\, - xlogx = 0
Then we got the value of dydx\dfrac{{dy}}{{dx}} as ,
dydx = 1+logxxlogx\dfrac{{dy}}{{dx}}{\text{ = }}\dfrac{{1 + \log x}}{{x\log x}}
Then ,
dy = 1+logxxlogxdxdy{\text{ = }}\dfrac{{1 + \log x}}{{x\log x}}dx
Integrating both sides we get,
dy=1+logxxlogxdx\int {dy = \int {\dfrac{{1 + \log x}}{{x\log x}}dx} }
Let logx=tlogx = t

dxdt=x  dxx=t  \dfrac{{dx}}{{dt}} = x \\\ \\\ \dfrac{{dx}}{x} = t \\\

The putting the value and integrating we get ,

1+ttdt=dy y=log(t)+t+k  ...............[where k is a constant] y=log(logx)+logx+k  \int {\dfrac{{1 + t}}{t}dt = \int {dy} } \\\ y = log(t) + t + k\;...............\left[ {{\text{where k is a constant}}} \right] \\\ y = log(logx) + logx + k \\\

Put x=ex = e and y=e2y = {e^2}
We get,

e2=log(log(e))+log(e)+k k=e21  {e^2} = log(log(e)) + log(e) + k \\\ k = {e^2} - 1 \\\

Therefore ,
y=log(xlogx)+(e21)  .......  [loga+logb=log(ab)]y = log(xlogx) + ({e^2} - 1)\;.......\;[\because loga + logb = log(ab)]

Note :- Whenever you are struck with these types of questions, first get the value of dydx\dfrac{{dy}}{{dx}} if you can .
Then apply the integral both sides to get the general equation. Then use the value of x&yx\& yif provided in the question to get the value of constant of integral. Then you can get the particular solution by putting the value of constant.