Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The particular integral of d2ydx2+2y=x2\frac{d^2y}{dx^2}+2y=x^2is

A

x21x^2 - 1

B

x2+1x^2 + 1

C

12(x21)\frac{1}{2}(x^2-1)

D

12(x2+1)\frac{1}{2}(x^2 + 1)

Answer

12(x21)\frac{1}{2}(x^2-1)

Explanation

Solution

Ifd2ydx3+2y=x2If \, \, \frac{d^2 y}{dx^3} + 2y \, =x^2
(D2+2)y=x2[D=ddx]\Rightarrow \, \, \, (D^2 + 2)y \, = x^2 \, \, \, \, \bigg[D=\frac{d}{dx}\bigg]
Particular integral (P.I.) =1D2+2x2=\frac{1}{D^2 + 2} x^2
=12(1+D22).x2=12(1+D22)1.(x2)= \frac{1}{2\bigg(1 + \frac{D^2}{2}\bigg)} . x^2 =\frac{1}{2} \bigg(1 + \frac{D^2}{2}\bigg)^{-1} . (x^2)
(1+D)1=1D+D2D3+....\because \, \, (1+D)^{-1} \, = 1 - D + D^2 - D^3 + ....
P.I.=12.[1(D22)+(D22)2......](x2)\therefore \, \, P.I. =\frac{1}{2} . \bigg[1- \bigg(\frac{D^2}{2}\bigg)+ \bigg(\frac{D^2}{2}\bigg)^2 - ...... \bigg](x^2)
P.I.=12.[x2D22(x2)]\Rightarrow \, \, P.I. \, = \frac{1}{2}. \bigg[x^2 \, - \frac{D^2}{2} (x^2)\bigg]
P.I.=12.[x21]\Rightarrow \, \, \, P.I. \, = \frac{1}{2} . \bigg[x^2 - 1\bigg]