Solveeit Logo

Question

Question: The particular integral of differential equation \( f\left( D \right)y = {e^{ax}} \) where \( f\left...

The particular integral of differential equation f(D)y=eaxf\left( D \right)y = {e^{ax}} where f(D)=(Da)g(D),g(a)0f\left( D \right) = \left( {D - a} \right)g\left( D \right),g\left( a \right) \ne 0 is:

A. meax B. eaxg(a) C. g(a)eax D. xeaxg(a)  A.{\text{ }}m{e^{ax}} \\\ B.{\text{ }}\dfrac{{{e^{ax}}}}{{g\left( a \right)}} \\\ C.{\text{ }}g\left( a \right){e^{ax}} \\\ D.{\text{ }}\dfrac{{x{e^{ax}}}}{{g\left( a \right)}} \\\
Explanation

Solution

Hint: In order to solve the problem, first differentiate the given function partially or part by part. Further we will check the relation between f(a)f\left( a \right) and f(a)f'\left( a \right) and on the basis of their values we will use the formula of particular integral by substituting the constant term in the same function, by replacing d with constant a.

Complete step-by-step answer:
Given equation is f(D)y=eaxf\left( D \right)y = {e^{ax}} ---- (1)
Where f(D)=(Da)g(D),g(a)0f\left( D \right) = \left( {D - a} \right)g\left( D \right),g\left( a \right) \ne 0 ---- (2)
First let us find out f(a)f\left( a \right) by using equation (2) substituting “a” in place of D.
f(D)=(Da)g(D) f(a)=(aa)g(D) f(a)=(0)g(D) f(a)=0  \because f\left( D \right) = \left( {D - a} \right)g\left( D \right) \\\ \Rightarrow f\left( a \right) = \left( {a - a} \right)g\left( D \right) \\\ \Rightarrow f\left( a \right) = \left( 0 \right)g\left( D \right) \\\ \Rightarrow f\left( a \right) = 0 \\\
Now let us first differentiate equation (2) in order to find f(a)f'\left( a \right)
f(D)=g(D)+(Da)g(D)\Rightarrow f'\left( D \right) = g\left( D \right) + \left( {D - a} \right)g'\left( D \right) --- (3)
First let us find out f(a)f'\left( a \right) by using equation (3) substituting “a” in place of D
f(D)=g(D)+(Da)g(D) f(a)=g(a)+(aa)g(a) f(a)=g(a)+(0)g(a) f(a)=g(a)+0 f(a)=g(a)  \because f'\left( D \right) = g\left( D \right) + \left( {D - a} \right)g'\left( D \right) \\\ \Rightarrow f'\left( a \right) = g\left( a \right) + \left( {a - a} \right)g'\left( a \right) \\\ \Rightarrow f'\left( a \right) = g\left( a \right) + \left( 0 \right)g'\left( a \right) \\\ \Rightarrow f'\left( a \right) = g\left( a \right) + 0 \\\ \Rightarrow f'\left( a \right) = g\left( a \right) \\\
From the above two result we have seen that f(a)=0&f(a)0f\left( a \right) = 0\& f'\left( a \right) \ne 0
So for particular integral we first differentiate equation (1) with respect to “a” and then find the ratio with f(a)f'\left( a \right)
Differentiating equation (1) we get:
=dda[eax] =xeax.........(4) [ddt[eαt]=αeat]  = \dfrac{d}{{da}}\left[ {{e^{ax}}} \right] \\\ = x{e^{ax}}.........{\text{(4) }}\left[ {\because \dfrac{d}{{dt}}\left[ {{e^{\alpha t}}} \right] = \alpha {e^{at}}} \right] \\\
Also
f(a)=g(a)f'\left( a \right) = g\left( a \right)
So, let us use the formula for a particular integral.
The particular integral is:
=xeaxf(a) =xeaxg(a)  = \dfrac{{x{e^{ax}}}}{{f'\left( a \right)}} \\\ = \dfrac{{x{e^{ax}}}}{{g\left( a \right)}} \\\
Hence, the particular integral is xeaxg(a)\dfrac{{x{e^{ax}}}}{{g\left( a \right)}}
So, option D is the correct option.

Note- A general solution of an nth-order equation is a solution containing n arbitrary independent constants of integration. A particular solution is derived from the general solution by setting the constants to particular values, often chosen to fulfill set 'initial conditions or boundary conditions'. Particular integral is a part of the solution of the differential equation.