Solveeit Logo

Question

Question: The partial fractions of \(\frac{3x^{3} - 8x^{2} + 10}{(x - 1)^{4}}\) is...

The partial fractions of 3x38x2+10(x1)4\frac{3x^{3} - 8x^{2} + 10}{(x - 1)^{4}} is

A

3(x1)+1(x1)2+7(x1)3+5(x1)4\frac{3}{(x - 1)} + \frac{1}{(x - 1)^{2}} + \frac{7}{(x - 1)^{3}} + \frac{5}{(x - 1)^{4}}

B

3(x1)+1(x1)27(x1)3+5(x1)4\frac{3}{(x - 1)} + \frac{1}{(x - 1)^{2}} - \frac{7}{(x - 1)^{3}} + \frac{5}{(x - 1)^{4}}

C

3(x1)+1(x1)27(x1)3+5(x1)4\frac{3}{(x - 1)} + \frac{1}{(x - 1)^{2}} - \frac{7}{(x - 1)^{3}} + \frac{5}{(x - 1)^{4}}

D

None of these

Answer

3(x1)+1(x1)27(x1)3+5(x1)4\frac{3}{(x - 1)} + \frac{1}{(x - 1)^{2}} - \frac{7}{(x - 1)^{3}} + \frac{5}{(x - 1)^{4}}

Explanation

Solution

3x38x2+10(x1)4=Ax1+B(x1)2+C(x1)3+D(x1)4\frac{3x^{3} - 8x^{2} + 10}{(x - 1)^{4}} = \frac{A}{x - 1} + \frac{B}{(x - 1)^{2}} + \frac{C}{(x - 1)^{3}} + \frac{D}{(x - 1)^{4}}

3x38x2+10=A(x1)3+B(x1)2+C(x1)+D3x^{3} - 8x^{2} + 10 = A(x - 1)^{3} + B(x - 1)^{2} + C(x - 1) + D

Equating coefficients of different powers of xx, 3=A3 = A

8=3A+BB=1- 8 = - 3A + B \Rightarrow B = 1

0 = 3A2B+CC=73A - 2B + C \Rightarrow C = - 7

10=A+BC+DD=510 = - A + B - C + D \Rightarrow D = 5

\therefore Given expression

= 3x1+1(x1)27(x1)3+5(x1)4\frac{3}{x - 1} + \frac{1}{(x - 1)^{2}} - \frac{7}{(x - 1)^{3}} + \frac{5}{(x - 1)^{4}}.