Solveeit Logo

Question

Mathematics Question on Ellipse

The parametric form of the ellipse 4(x+1)2+(y1)2=44\left(x+1\right)^{2}+\left(y-1\right)^{2}=4 is

A

x=cosθ1,y=2sinθ1x=\cos \theta-1, y=2 \,\sin \theta-1

B

x=2cosθ1,y=sinθ+1x=2 \cos \theta-1, y=\sin \theta+1

C

x=cosθ1,y=2sinθ+1x=\cos \theta-1, y=2 \sin \theta+1

D

x=cosθ+1,y=2sinθ+1x=\cos \theta+1, y=2 \sin \theta+1

Answer

x=cosθ1,y=2sinθ+1x=\cos \theta-1, y=2 \sin \theta+1

Explanation

Solution

Given equation of ellipse can be rewritten as
(x+1)21+(y1)24=1\frac{(x+1)^{2}}{1}+\frac{(y-1)^{2}}{4}=1
\therefore Parametric equations of ellipse is
X+1=cosθX+1=\cos \,\theta
and y1=2sinθy-1 =2 \sin \,\theta
x=cosθ1\Rightarrow x =\cos \,\theta-1
and y=2sinθ+1y=2 \sin \,\theta+1