Solveeit Logo

Question

Mathematics Question on Circle

The parametric form of equation of the circle x2+y26x+2y28=0x^2 + y^2 - 6x + 2y - 28 = 0 is

A

x=3+38cosθ,y=1+38sinθx = -3+\sqrt{38}\,cos\,\theta, y = -1+\sqrt{38}\,sin\,\theta

B

x28cosθ,y=28sinθx \sqrt{28}\,cos\,\theta, y = \sqrt{28}\,sin\,\theta

C

x=338cosθ,y=1+38sinθx = -3-\sqrt{38}\,cos\,\theta, y = 1+\sqrt{38}\,sin\,\theta

D

x=3+38cosθ,y=1+38sinθx = 3+\sqrt{38}\,cos\,\theta, y = -1+\sqrt{38}\,sin\,\theta

Answer

x=3+38cosθ,y=1+38sinθx = 3+\sqrt{38}\,cos\,\theta, y = -1+\sqrt{38}\,sin\,\theta

Explanation

Solution

EqnEq^n of circle is x2+y26x+2y28=0x^2 + y^2 - 6x + 2y - 28 = 0 2g=6g=32g = - 6 \Rightarrow g = - 3 and 2f=2f=12f = 2 \Rightarrow f = 1 c=28c = - 28 r=g2+f2c=9+1+28\therefore r = \sqrt{g^{2} + f ^{2} - c} = \sqrt{9+1+28} =38= \sqrt{38} centre :=(g,f)=(3,1)=(h,k): = \left(-g, -f\right) = \left(3, - 1\right) = \left(h, k\right) x=h+r.cosθ\therefore x = h + r.cos\, \theta, and y=k+rsinθy = k + r sin\, \theta x=3+38cosθ,y=1+38sinθ\Rightarrow x = 3+\sqrt{38}\,cos\,\theta, y = -1+\sqrt{38}\,sin\,\theta