Solveeit Logo

Question

Question: The parametric equation of a parabola is x = t<sup>2</sup> + 1, y = 2t + 1. The cartesian form of it...

The parametric equation of a parabola is x = t2 + 1, y = 2t + 1. The cartesian form of its directrix is

A

x = 0

B

x + 1 = 0

C

y = 0 `

D

y = 1

Answer

x = 0

Explanation

Solution

t2 = x – 1, t = y12\frac{y - 1}{2}

(y12)2=(x1)(y1)2=4(x1)\left( \frac{\mathbf{y}\mathbf{-}\mathbf{1}}{\mathbf{2}} \right)^{\mathbf{2}}\mathbf{= (x}\mathbf{-}\mathbf{1)}\mathbf{\Rightarrow}\mathbf{(y}\mathbf{-}\mathbf{1}\mathbf{)}^{\mathbf{2}}\mathbf{= 4(x}\mathbf{-}\mathbf{1)}

The equation directrix is x – 1 = -1 ⇒x = 0.