Question
Question: The parametric angle $\theta$, where $-\pi < \theta \le \pi$, of the point on the ellipse $\frac{x^2...
The parametric angle θ, where −π<θ≤π, of the point on the ellipse a2x2+b2y2=1 at which the tangent drawn cuts the intercept of minimum length on the co-ordinates axis, is/are :

tan−1ab
−tan−1ab
π−tan−1ab
π+tan−1ab
A, B, C
Solution
The parametric coordinates of a point on the ellipse are (acosθ,bsinθ). The equation of the tangent is axcosθ+bysinθ=1. The intercepts on the axes are X=cosθa and Y=sinθb. The square of the length of the intercept is S2=X2+Y2=cos2θa2+sin2θb2. Minimizing S2 with respect to θ yields tan2θ=ab. Let α=tan−1ab. Since ab>0, α∈(0,2π). The condition tan2θ=ab implies tanθ=±ab. The solutions for θ in the range (−π,π] are:
- tanθ=ab=tanα⟹θ=α (Option A) or θ=α−π (not an option).
- tanθ=−ab=−tanα=tan(−α)⟹θ=−α (Option B) or θ=π−α (Option C).
The four angles in (−π,π] are α, −α, π−α, and α−π. Options A, B, and C correspond to α, −α, and π−α. Option D, π+α, lies outside the range (−π,π].
