Solveeit Logo

Question

Question: The parametric angle $\theta$, where $-\pi < \theta \le \pi$, of the point on the ellipse $\frac{x^2...

The parametric angle θ\theta, where π<θπ-\pi < \theta \le \pi, of the point on the ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 at which the tangent drawn cuts the intercept of minimum length on the co-ordinates axis, is/are :

A

tan1ba\tan^{-1}\sqrt{\frac{b}{a}}

B

tan1ba-\tan^{-1}\sqrt{\frac{b}{a}}

C

πtan1ba\pi-\tan^{-1}\sqrt{\frac{b}{a}}

D

π+tan1ba\pi+\tan^{-1}\sqrt{\frac{b}{a}}

Answer

A, B, C

Explanation

Solution

The parametric coordinates of a point on the ellipse are (acosθ,bsinθ)(a \cos\theta, b \sin\theta). The equation of the tangent is xacosθ+ybsinθ=1\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1. The intercepts on the axes are X=acosθX = \frac{a}{\cos\theta} and Y=bsinθY = \frac{b}{\sin\theta}. The square of the length of the intercept is S2=X2+Y2=a2cos2θ+b2sin2θS^2 = X^2 + Y^2 = \frac{a^2}{\cos^2\theta} + \frac{b^2}{\sin^2\theta}. Minimizing S2S^2 with respect to θ\theta yields tan2θ=ba\tan^2\theta = \frac{b}{a}. Let α=tan1ba\alpha = \tan^{-1}\sqrt{\frac{b}{a}}. Since ba>0\sqrt{\frac{b}{a}} > 0, α(0,π2)\alpha \in (0, \frac{\pi}{2}). The condition tan2θ=ba\tan^2\theta = \frac{b}{a} implies tanθ=±ba\tan\theta = \pm \sqrt{\frac{b}{a}}. The solutions for θ\theta in the range (π,π](-\pi, \pi] are:

  1. tanθ=ba=tanα    θ=α\tan\theta = \sqrt{\frac{b}{a}} = \tan\alpha \implies \theta = \alpha (Option A) or θ=απ\theta = \alpha - \pi (not an option).
  2. tanθ=ba=tanα=tan(α)    θ=α\tan\theta = -\sqrt{\frac{b}{a}} = -\tan\alpha = \tan(-\alpha) \implies \theta = -\alpha (Option B) or θ=πα\theta = \pi - \alpha (Option C).

The four angles in (π,π](-\pi, \pi] are α\alpha, α-\alpha, πα\pi-\alpha, and απ\alpha-\pi. Options A, B, and C correspond to α\alpha, α-\alpha, and πα\pi-\alpha. Option D, π+α\pi+\alpha, lies outside the range (π,π](-\pi, \pi].