Question
Mathematics Question on Applications of Determinants and Matrices
The parameter on which the value of the determinant ⇒Δ=1 cos(p−d)x sin(p−d)x acos pxsin pxa2cos(p+d)xsin(p+d)x does not depend upon, is
A
a
B
p
C
d
D
x
Answer
p
Explanation
Solution
=1 cos(p−d)x sin(p−d)acos pxsin pxa2cos(p+d)xsin(p+d)x
Applying C1→Cx+C3
=1+a2 cos(p−d)x+cos(p+d)x sin(p−d)+sin(p+d)xacos pxsin pxa2cos(p+d)xsin(p+d)x
⇒Δ=1+a2\2cos px cos dx\2sin px sin dxacos pxsin pxa2cos(p+d)xsin(p+d)x
Applying C1→C1−2cosdxC2
⇒Δ=1+a2−2a cos dx\0\0acos pxsin pxa2cos(p+d)xsin(p+d)x
⇒Δ=(1+a2−2acosdx)[sin(p+d)xcospx−sinpxcos(p+d)x]
⇒Δ=(1+a2−2acosdx)sindx
which is independent of p.