Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The parabolas : ax2+2bx+cy=0a x^2+2 b x+c y=0 and dx2+2ex+fy=0d x^2+2 e x+f y=0 intersect on the line y=1y=1 If a,b,c,d,e,fa, b, c, d, e, f are positive real numbers and a,b,ca, b, c are in GP, then

A

da,eb,fc\frac{d}{a}, \frac{e}{b}, \frac{f}{c} are in G.P.

B

d,e,fd, e, f are in A.P.

C

d,e,fd, e, f are in G.P.

D

da,eb,fc\frac{d}{a}, \frac{e}{b}, \frac{f}{c} are in A.P.

Answer

da,eb,fc\frac{d}{a}, \frac{e}{b}, \frac{f}{c} are in A.P.

Explanation

Solution

ax2+2bx+c=0
⇒ax2+2acx​+c=0(∵b2=ac)
⇒(xa​+c​)2=0
x2−a​c​​……(1)
Now, dx2+2ex+f=0
⇒d(ac​)+2e[−a​c​​]+f=0
⇒adc​+f=2eac​​
⇒ad​+cf​=2eac1​​
⇒ad​+cf​=b2e​[ as b=ae​]
∴ad​,be​,cf​ are in A.P.
So, the correct option is (D) : da,eb,fc\frac{d}{a}, \frac{e}{b}, \frac{f}{c} are in A.P.