Solveeit Logo

Question

Mathematics Question on Circle

The parabola y2=xy^2=x divides the circle x2+y2=2x^2 +y^2 = 2 into two parts whose areas are in the ratio

A

9π+2:3π29\pi + 2 : 3\pi -2

B

9π2:3π+29\pi - 2 : 3\pi +2

C

7π2:2π37\pi - 2 : 2\pi -3

D

7π+2:3π+27\pi + 2 : 3\pi +2

Answer

9π2:3π+29\pi - 2 : 3\pi +2

Explanation

Solution

Areaofcircle=π(2)2=2πArea of circle =\pi\left(\sqrt{2}\right)^{2}=2\pi Area of OCADO = 2 \left\\{Area\, of\, OCAO\right\\} =2\left\\{area of OCB + area of BCA\right\\} =201ypdx+2=2\int\limits^{1}_{{0}}y_pdx+2 12ycdx\int\limits^{{{\sqrt{2}}}}_{{1}}y_cdx where yp=xy_{p}=\sqrt{x} and yc=2x2y_{c}=\sqrt{2-x^{2}} \therefore Required Area =201=2\int\limits^{1}_{{0}} xdx+2\sqrt{x} dx+2 12\int\limits^{{{\sqrt{2}}}}_{{1}} 2x2dx\sqrt{2-x^{2}}dx =[23.10]+2[x2x22+sin1x2]12=\left[\frac{2}{3}.1-0\right]+2\left[\frac{x\sqrt{2-x^{2}}}{2}+sin^{-1} \frac{x}{\sqrt{2}}\right]^{^{\sqrt{2}}}_{_{_1}} =\frac{4}{3}+2\left\\{\frac{\pi}{2}-\frac{\pi }{4}-\frac{1}{2}\right\\}=\frac{4}{3}+2\left\\{\frac{\pi}{4}-\frac{1}{2}\right\\}=\frac{3\pi+2}{6} Bigger area =2π3π+26=9π26=2\pi-\frac{3\pi+2}{6}=\frac{9\pi-2}{6} \therefore Required Ratio =9π23π+2i.e.,9π2:3π+2= \frac{9\pi-2}{3\pi+2} i.e., 9\pi-2 : 3\pi+2