Question
Mathematics Question on Circle
The parabola y2=x divides the circle x2+y2=2 into two parts whose areas are in the ratio
A
9π+2:3π−2
B
9π−2:3π+2
C
7π−2:2π−3
D
7π+2:3π+2
Answer
9π−2:3π+2
Explanation
Solution
Areaofcircle=π(2)2=2π Area of OCADO = 2 \left\\{Area\, of\, OCAO\right\\} =2\left\\{area of OCB + area of BCA\right\\} =20∫1ypdx+2 1∫2ycdx where yp=x and yc=2−x2 ∴ Required Area =20∫1 xdx+2 1∫2 2−x2dx =[32.1−0]+2[2x2−x2+sin−12x]12 =\frac{4}{3}+2\left\\{\frac{\pi}{2}-\frac{\pi }{4}-\frac{1}{2}\right\\}=\frac{4}{3}+2\left\\{\frac{\pi}{4}-\frac{1}{2}\right\\}=\frac{3\pi+2}{6} Bigger area =2π−63π+2=69π−2 ∴ Required Ratio =3π+29π−2i.e.,9π−2:3π+2