Solveeit Logo

Question

Mathematics Question on Conic sections

The parabola y2=4xy^2 = 4x divides the area of the circle x2+y2=5x^2 + y^2 = 5 in two parts. The area of the smaller part is equal to:

A

23+5sin1(25)\frac{2}{3} + 5 \sin^{-1}\left( \frac{2}{\sqrt{5}} \right)

B

13+5sin1(25)\frac{1}{3} + 5 \sin^{-1}\left( \frac{2}{\sqrt{5}} \right)

C

13+5sin1(25)\frac{1}{3} + \sqrt{5} \sin^{-1}\left( \frac{2}{\sqrt{5}} \right)

D

23+5sin1(25)\frac{2}{3} + \sqrt{5} \sin^{-1}\left( \frac{2}{\sqrt{5}} \right)

Answer

23+5sin1(25)\frac{2}{3} + 5 \sin^{-1}\left( \frac{2}{\sqrt{5}} \right)

Explanation

Solution

The parabola y2=4xy^2 = 4x intersects the circle x2+y2=5x^2 + y^2 = 5 at two points. To find these points of intersection, substitute x=y24x = \frac{y^2}{4} into x2+y2=5x^2 + y^2 = 5:

(y24)2+y2=5.\left( \frac{y^2}{4} \right)^2 + y^2 = 5.

Simplify:

y416+y2=5.\frac{y^4}{16} + y^2 = 5.

Multiply through by 16:

y4+16y2=80.y^4 + 16y^2 = 80.

Let z=y2z = y^2, so:

z2+16z80=0.z^2 + 16z - 80 = 0.

Solve this quadratic equation:

z=16±1624(1)(80)2(1)=16±256+3202=16±5762.z = \frac{-16 \pm \sqrt{16^2 - 4(1)(-80)}}{2(1)} = \frac{-16 \pm \sqrt{256 + 320}}{2} = \frac{-16 \pm \sqrt{576}}{2}. z=16±242.z = \frac{-16 \pm 24}{2}.

This gives z=4z = 4 or z=20z = -20 (discarded as z=y20z = y^2 \geq 0).

Thus, y2=4y^2 = 4, so y=±2y = \pm 2. The points of intersection are (1,2)(1, 2) and (1,2)(1, -2).

The region to the left of the parabola is bounded by the circle x2+y2=5x^2 + y^2 = 5, and we calculate the area of this smaller region.

Area Calculation

The area of the circle segment is:

Asegment=R2sin1(dR)d2R2d2,A_{\text{segment}} = R^2 \sin^{-1} \left( \frac{d}{R} \right) - \frac{d}{2} \sqrt{R^2 - d^2},

where R=5R = \sqrt{5} is the radius of the circle and d=2d = 2 is the distance from the circle center to the chord.

Substitute the values:

Asegment=5sin1(25)2254.A_{\text{segment}} = 5 \sin^{-1} \left( \frac{2}{\sqrt{5}} \right) - \frac{2}{2} \sqrt{5 - 4}.

The area of the parabola sector is:

Aparabola=23.A_{\text{parabola}} = \frac{2}{3}.

Thus, the smaller part’s area is:

Asmaller=23+5sin1(25).A_{\text{smaller}} = \frac{2}{3} + 5 \sin^{-1} \left( \frac{2}{\sqrt{5}} \right).
Thus the correct answer is Option 1.