Solveeit Logo

Question

Mathematics Question on Circle

The parabola y2=2xy^{2} = 2x divides the circle x2+y2=8x^{2 }+ y^{2} = 8 in two parts. Then, the ratio of the areas of these parts is

A

(3π2):(10π+2)\left(3\pi-2\right) : \left(10\pi+2\right)

B

(3π+2):(9π2)\left(3\pi+2\right) : \left(9\pi-2\right)

C

(6π3):(11π5)\left(6\pi-3\right): \left(11\pi-5\right)

D

(2π9):(9π+2)\left(2\pi-9\right): \left(9\pi+2\right)

Answer

(3π+2):(9π2)\left(3\pi+2\right) : \left(9\pi-2\right)

Explanation

Solution

We have y2=2x...(i)y^{2} = 2x ...\left(i\right), and x2+y2=8...(ii)x^{2} + y^{2} = 8\, ...\left(ii\right), a circle with centre (0,0)\left(0,0\right) and radius 222\sqrt{2}. Let the area of the smaller part of the circle be A1A_{1} and that of the bigger part be A2A_{2}. We have to find A1A2\frac{A_{1}}{A_{2}}. On solving (i)\left(i\right) and (ii)\left(ii\right), we get x=2,4x = 2, -4 x=4x = -4 is not possible as both the points of intersection have the same positive xx-coordinate. Thus, C(2,0)C\equiv\left(2,0\right) Now, A1=2[Area(OBCO)+Area(CBAC)]A_{1}=2\left[\text{Area}\left(OBCO\right)+\,\text{Area}\left(CBAC\right)\right] or \quad A1=2[022xdx+2228x2dx]A_{1}=2\left[\int\limits_{0}^{2}\sqrt{2x}\,dx+\int\limits_{2}^{2\sqrt{2}}\sqrt{8-x^{2}} \,dx\right] A1=2[223x3/2]02+2[x28x2+82sin1x22]222\Rightarrow A_{1}=2\left[\sqrt{2}\cdot\frac{2}{3}x^{3 /2}\right]_{0}^{2}+2\left[\frac{x}{2}\sqrt{8-x^{2}}+\frac{8}{2}sin^{-1}\frac{x}{2\sqrt{2}}\right]_{2}^{2\sqrt{2}} =163+2[2π(2+4×π4)]=(43+2π)=\frac{16}{3}+2\left[2\pi-\left(2+4\times\frac{\pi}{4}\right)\right]=\left(\frac{4}{3}+2\pi\right) s units Area of circle =π(22)2=8π=\pi\left(2\sqrt{2}\right)^{2}=8\pi s units Hence, A2=8πA1=(6π43)A_{2}=8\pi-A_{1}=\left(6\pi-\frac{4}{3}\right) s units Then, the required ratio is A1A2=43+2π6π43\frac{A_{1}}{A_{2}}=\frac{\frac{4}{3}+2\pi}{6\pi-\frac{4}{3}} =2+3π9π2=\frac{2+3\pi}{9\pi-2}